A subspace $F$ of $E$ is dense in $E$ $iff$ $F^o = {0}$
$begingroup$
Problem: Let $E$ is a normed space and $A subset E$. Define $$A^o := {y in
A': |y(x)| leq 1, forall x in A}.$$ in which, $A'$ is the dual
space of $A$ with $A' = L(A,mathbb{K})$ under norm $$||y|| :=
displaystylesup_{||x|| le 1} |y(x)|.$$
With this definition, show that
$A^o$ is convex, balanced, closed in $A'$.- If $A$ is convex, balanced then $overline{A} = (A^o)^o.$
- A subspace $F$ of $E$ is dense in $E$ $iff$ $F^o = {0}.$
My attempt:
$forall y_1,y_2 in A^o; forall alpha,beta in mathbb{K}, |alpha| + |beta| leq 1 Rightarrow alpha y_1 + beta y_2 in A$ i.e $forall x in A, |(alpha y_1 + beta y_2)(x)| = |alpha y_1 (x) + beta y_2 (x)| le |alpha||y_1 (x)| + |beta||y_2 (x)| le |alpha|.1 + |beta|.1 le 1$.
$Rightarrow sup_{x in A} (alpha y_1 + beta y_2) le 1 Rightarrow alpha y_1 + beta y_2 in A^o$.
So, $A^o$ is convex, balanced.
$forall {y_n} in A^o: y_n longrightarrow y_0 in A'Rightarrow y_0 in A^o$.
$forall x in A$ since $y_n longrightarrow y_0 Rightarrow y_n(x) longrightarrow y_0(x) Rightarrow |y_n(x)| longrightarrow |y_0(x)|.$
Since $y_n in A^o$ then $|y_n (x)| leq 1, forall n Rightarrow |y_0 (x)| le 1, forall x in A Rightarrow y_0 in A^o$.
So, $A^o$ is closed.
- We'll show that $overline{A} subset A^{oo}$ and $A^{oo} subset overline{A}$.
Choose $x in A Rightarrow |y(x)| le 1, forall y in A^o Rightarrow x in (A^o)^o$.
$$Rightarrow sup_{y in A^o} |x(y)| = sup_{y in A^o} |y(x)| le 1.$$
$Rightarrow A subset A^{oo} Rightarrow overline{A} subset A^{oo}$ since $overline{A}$ is the smallest closed set including $A$.
$forall xi in E setminus overline{A}$, exists a $epsilon > 0 : B(xi,2 epsilon) cap overline{A} = emptyset$.
$Rightarrow exists y^* in E' : |y(x)|<1, forall x in A.$
$Rightarrow y^* in A^o.$
Is that right? How to show that the finally cases? Thank all!
functional-analysis proof-verification
$endgroup$
add a comment |
$begingroup$
Problem: Let $E$ is a normed space and $A subset E$. Define $$A^o := {y in
A': |y(x)| leq 1, forall x in A}.$$ in which, $A'$ is the dual
space of $A$ with $A' = L(A,mathbb{K})$ under norm $$||y|| :=
displaystylesup_{||x|| le 1} |y(x)|.$$
With this definition, show that
$A^o$ is convex, balanced, closed in $A'$.- If $A$ is convex, balanced then $overline{A} = (A^o)^o.$
- A subspace $F$ of $E$ is dense in $E$ $iff$ $F^o = {0}.$
My attempt:
$forall y_1,y_2 in A^o; forall alpha,beta in mathbb{K}, |alpha| + |beta| leq 1 Rightarrow alpha y_1 + beta y_2 in A$ i.e $forall x in A, |(alpha y_1 + beta y_2)(x)| = |alpha y_1 (x) + beta y_2 (x)| le |alpha||y_1 (x)| + |beta||y_2 (x)| le |alpha|.1 + |beta|.1 le 1$.
$Rightarrow sup_{x in A} (alpha y_1 + beta y_2) le 1 Rightarrow alpha y_1 + beta y_2 in A^o$.
So, $A^o$ is convex, balanced.
$forall {y_n} in A^o: y_n longrightarrow y_0 in A'Rightarrow y_0 in A^o$.
$forall x in A$ since $y_n longrightarrow y_0 Rightarrow y_n(x) longrightarrow y_0(x) Rightarrow |y_n(x)| longrightarrow |y_0(x)|.$
Since $y_n in A^o$ then $|y_n (x)| leq 1, forall n Rightarrow |y_0 (x)| le 1, forall x in A Rightarrow y_0 in A^o$.
So, $A^o$ is closed.
- We'll show that $overline{A} subset A^{oo}$ and $A^{oo} subset overline{A}$.
Choose $x in A Rightarrow |y(x)| le 1, forall y in A^o Rightarrow x in (A^o)^o$.
$$Rightarrow sup_{y in A^o} |x(y)| = sup_{y in A^o} |y(x)| le 1.$$
$Rightarrow A subset A^{oo} Rightarrow overline{A} subset A^{oo}$ since $overline{A}$ is the smallest closed set including $A$.
$forall xi in E setminus overline{A}$, exists a $epsilon > 0 : B(xi,2 epsilon) cap overline{A} = emptyset$.
$Rightarrow exists y^* in E' : |y(x)|<1, forall x in A.$
$Rightarrow y^* in A^o.$
Is that right? How to show that the finally cases? Thank all!
functional-analysis proof-verification
$endgroup$
add a comment |
$begingroup$
Problem: Let $E$ is a normed space and $A subset E$. Define $$A^o := {y in
A': |y(x)| leq 1, forall x in A}.$$ in which, $A'$ is the dual
space of $A$ with $A' = L(A,mathbb{K})$ under norm $$||y|| :=
displaystylesup_{||x|| le 1} |y(x)|.$$
With this definition, show that
$A^o$ is convex, balanced, closed in $A'$.- If $A$ is convex, balanced then $overline{A} = (A^o)^o.$
- A subspace $F$ of $E$ is dense in $E$ $iff$ $F^o = {0}.$
My attempt:
$forall y_1,y_2 in A^o; forall alpha,beta in mathbb{K}, |alpha| + |beta| leq 1 Rightarrow alpha y_1 + beta y_2 in A$ i.e $forall x in A, |(alpha y_1 + beta y_2)(x)| = |alpha y_1 (x) + beta y_2 (x)| le |alpha||y_1 (x)| + |beta||y_2 (x)| le |alpha|.1 + |beta|.1 le 1$.
$Rightarrow sup_{x in A} (alpha y_1 + beta y_2) le 1 Rightarrow alpha y_1 + beta y_2 in A^o$.
So, $A^o$ is convex, balanced.
$forall {y_n} in A^o: y_n longrightarrow y_0 in A'Rightarrow y_0 in A^o$.
$forall x in A$ since $y_n longrightarrow y_0 Rightarrow y_n(x) longrightarrow y_0(x) Rightarrow |y_n(x)| longrightarrow |y_0(x)|.$
Since $y_n in A^o$ then $|y_n (x)| leq 1, forall n Rightarrow |y_0 (x)| le 1, forall x in A Rightarrow y_0 in A^o$.
So, $A^o$ is closed.
- We'll show that $overline{A} subset A^{oo}$ and $A^{oo} subset overline{A}$.
Choose $x in A Rightarrow |y(x)| le 1, forall y in A^o Rightarrow x in (A^o)^o$.
$$Rightarrow sup_{y in A^o} |x(y)| = sup_{y in A^o} |y(x)| le 1.$$
$Rightarrow A subset A^{oo} Rightarrow overline{A} subset A^{oo}$ since $overline{A}$ is the smallest closed set including $A$.
$forall xi in E setminus overline{A}$, exists a $epsilon > 0 : B(xi,2 epsilon) cap overline{A} = emptyset$.
$Rightarrow exists y^* in E' : |y(x)|<1, forall x in A.$
$Rightarrow y^* in A^o.$
Is that right? How to show that the finally cases? Thank all!
functional-analysis proof-verification
$endgroup$
Problem: Let $E$ is a normed space and $A subset E$. Define $$A^o := {y in
A': |y(x)| leq 1, forall x in A}.$$ in which, $A'$ is the dual
space of $A$ with $A' = L(A,mathbb{K})$ under norm $$||y|| :=
displaystylesup_{||x|| le 1} |y(x)|.$$
With this definition, show that
$A^o$ is convex, balanced, closed in $A'$.- If $A$ is convex, balanced then $overline{A} = (A^o)^o.$
- A subspace $F$ of $E$ is dense in $E$ $iff$ $F^o = {0}.$
My attempt:
$forall y_1,y_2 in A^o; forall alpha,beta in mathbb{K}, |alpha| + |beta| leq 1 Rightarrow alpha y_1 + beta y_2 in A$ i.e $forall x in A, |(alpha y_1 + beta y_2)(x)| = |alpha y_1 (x) + beta y_2 (x)| le |alpha||y_1 (x)| + |beta||y_2 (x)| le |alpha|.1 + |beta|.1 le 1$.
$Rightarrow sup_{x in A} (alpha y_1 + beta y_2) le 1 Rightarrow alpha y_1 + beta y_2 in A^o$.
So, $A^o$ is convex, balanced.
$forall {y_n} in A^o: y_n longrightarrow y_0 in A'Rightarrow y_0 in A^o$.
$forall x in A$ since $y_n longrightarrow y_0 Rightarrow y_n(x) longrightarrow y_0(x) Rightarrow |y_n(x)| longrightarrow |y_0(x)|.$
Since $y_n in A^o$ then $|y_n (x)| leq 1, forall n Rightarrow |y_0 (x)| le 1, forall x in A Rightarrow y_0 in A^o$.
So, $A^o$ is closed.
- We'll show that $overline{A} subset A^{oo}$ and $A^{oo} subset overline{A}$.
Choose $x in A Rightarrow |y(x)| le 1, forall y in A^o Rightarrow x in (A^o)^o$.
$$Rightarrow sup_{y in A^o} |x(y)| = sup_{y in A^o} |y(x)| le 1.$$
$Rightarrow A subset A^{oo} Rightarrow overline{A} subset A^{oo}$ since $overline{A}$ is the smallest closed set including $A$.
$forall xi in E setminus overline{A}$, exists a $epsilon > 0 : B(xi,2 epsilon) cap overline{A} = emptyset$.
$Rightarrow exists y^* in E' : |y(x)|<1, forall x in A.$
$Rightarrow y^* in A^o.$
Is that right? How to show that the finally cases? Thank all!
functional-analysis proof-verification
functional-analysis proof-verification
edited Jan 16 at 5:46
Minh
asked Jan 15 at 15:42
MinhMinh
1959
1959
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074564%2fa-subspace-f-of-e-is-dense-in-e-iff-fo-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074564%2fa-subspace-f-of-e-is-dense-in-e-iff-fo-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown