Determine all $a$ and $b$ natural numbers such that $frac {a^2+2b} {b^2-2a}$ and $frac {b^2+2a} {a^2-2b}$ are...
$begingroup$
I proceeded in the following way:
It is clear that $a ne 0$ and $b ne 0$.
Let $frac {a^2+2b} {b^2-2a} = k, k in mathbb{Z} tag 1$
and $frac {b^2+2a} {a^2-2b} = m, m in mathbb{Z} tag 2$
1. If $a = b$:
Let $a = b = n$. Then $k = m = frac {n^2+2n} {n^2-2n} = frac {n(n+2)} {n(n-2)} = frac {n+2} {n-2} = p, p in mathbb{Z}$. From here we get that $n in {1, 3, 4, 6}$. I don't know if these are all so I can't prove that there are no others.
2. If $a ne b$:
For $k$ and $m$ to be whole numbers the numerators have to be greater than or equal to the denominator in $(1)$ and $(2)$.
From $(1)$ we get that $a^2+2b ge b^2-2a implies a+2 ge b tag {3}$
From $(2)$ we get that $b^2+2a ge a^2-2b implies b+2 ge a tag {4}$
Here I am stuck again... WolframAlpha gives me these solutions to $(3)$ and $(4)$.
fractions natural-numbers
$endgroup$
add a comment |
$begingroup$
I proceeded in the following way:
It is clear that $a ne 0$ and $b ne 0$.
Let $frac {a^2+2b} {b^2-2a} = k, k in mathbb{Z} tag 1$
and $frac {b^2+2a} {a^2-2b} = m, m in mathbb{Z} tag 2$
1. If $a = b$:
Let $a = b = n$. Then $k = m = frac {n^2+2n} {n^2-2n} = frac {n(n+2)} {n(n-2)} = frac {n+2} {n-2} = p, p in mathbb{Z}$. From here we get that $n in {1, 3, 4, 6}$. I don't know if these are all so I can't prove that there are no others.
2. If $a ne b$:
For $k$ and $m$ to be whole numbers the numerators have to be greater than or equal to the denominator in $(1)$ and $(2)$.
From $(1)$ we get that $a^2+2b ge b^2-2a implies a+2 ge b tag {3}$
From $(2)$ we get that $b^2+2a ge a^2-2b implies b+2 ge a tag {4}$
Here I am stuck again... WolframAlpha gives me these solutions to $(3)$ and $(4)$.
fractions natural-numbers
$endgroup$
add a comment |
$begingroup$
I proceeded in the following way:
It is clear that $a ne 0$ and $b ne 0$.
Let $frac {a^2+2b} {b^2-2a} = k, k in mathbb{Z} tag 1$
and $frac {b^2+2a} {a^2-2b} = m, m in mathbb{Z} tag 2$
1. If $a = b$:
Let $a = b = n$. Then $k = m = frac {n^2+2n} {n^2-2n} = frac {n(n+2)} {n(n-2)} = frac {n+2} {n-2} = p, p in mathbb{Z}$. From here we get that $n in {1, 3, 4, 6}$. I don't know if these are all so I can't prove that there are no others.
2. If $a ne b$:
For $k$ and $m$ to be whole numbers the numerators have to be greater than or equal to the denominator in $(1)$ and $(2)$.
From $(1)$ we get that $a^2+2b ge b^2-2a implies a+2 ge b tag {3}$
From $(2)$ we get that $b^2+2a ge a^2-2b implies b+2 ge a tag {4}$
Here I am stuck again... WolframAlpha gives me these solutions to $(3)$ and $(4)$.
fractions natural-numbers
$endgroup$
I proceeded in the following way:
It is clear that $a ne 0$ and $b ne 0$.
Let $frac {a^2+2b} {b^2-2a} = k, k in mathbb{Z} tag 1$
and $frac {b^2+2a} {a^2-2b} = m, m in mathbb{Z} tag 2$
1. If $a = b$:
Let $a = b = n$. Then $k = m = frac {n^2+2n} {n^2-2n} = frac {n(n+2)} {n(n-2)} = frac {n+2} {n-2} = p, p in mathbb{Z}$. From here we get that $n in {1, 3, 4, 6}$. I don't know if these are all so I can't prove that there are no others.
2. If $a ne b$:
For $k$ and $m$ to be whole numbers the numerators have to be greater than or equal to the denominator in $(1)$ and $(2)$.
From $(1)$ we get that $a^2+2b ge b^2-2a implies a+2 ge b tag {3}$
From $(2)$ we get that $b^2+2a ge a^2-2b implies b+2 ge a tag {4}$
Here I am stuck again... WolframAlpha gives me these solutions to $(3)$ and $(4)$.
fractions natural-numbers
fractions natural-numbers
edited Jan 15 at 19:26
Krisztián Kiss
asked Jan 15 at 19:18
Krisztián KissKrisztián Kiss
484
484
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
So we have $bin {a-2,a-1,a,a+1,a+2}$
Case 1: $b= a-2$, then $$(a-2)^2-2amid a^2+2(a-2)$$
so $$a^2-6a+4mid a^2+2a-4$$
and thus $$a^2-6a+4mid (a^2+2a-4)-(a^2-6a+4)=8a-8$$ Now if $a=1$ then $b=-1$ which works. So $a>1$ and now we have $$a^2-6a+4leq 8a-8implies a^2-14a+12leq 0$$
so $$ (a-7)^2leq 37implies |a-7|leq 6...$$
We do similary for all other cases...
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074826%2fdetermine-all-a-and-b-natural-numbers-such-that-frac-a22b-b2-2a-an%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
So we have $bin {a-2,a-1,a,a+1,a+2}$
Case 1: $b= a-2$, then $$(a-2)^2-2amid a^2+2(a-2)$$
so $$a^2-6a+4mid a^2+2a-4$$
and thus $$a^2-6a+4mid (a^2+2a-4)-(a^2-6a+4)=8a-8$$ Now if $a=1$ then $b=-1$ which works. So $a>1$ and now we have $$a^2-6a+4leq 8a-8implies a^2-14a+12leq 0$$
so $$ (a-7)^2leq 37implies |a-7|leq 6...$$
We do similary for all other cases...
$endgroup$
add a comment |
$begingroup$
So we have $bin {a-2,a-1,a,a+1,a+2}$
Case 1: $b= a-2$, then $$(a-2)^2-2amid a^2+2(a-2)$$
so $$a^2-6a+4mid a^2+2a-4$$
and thus $$a^2-6a+4mid (a^2+2a-4)-(a^2-6a+4)=8a-8$$ Now if $a=1$ then $b=-1$ which works. So $a>1$ and now we have $$a^2-6a+4leq 8a-8implies a^2-14a+12leq 0$$
so $$ (a-7)^2leq 37implies |a-7|leq 6...$$
We do similary for all other cases...
$endgroup$
add a comment |
$begingroup$
So we have $bin {a-2,a-1,a,a+1,a+2}$
Case 1: $b= a-2$, then $$(a-2)^2-2amid a^2+2(a-2)$$
so $$a^2-6a+4mid a^2+2a-4$$
and thus $$a^2-6a+4mid (a^2+2a-4)-(a^2-6a+4)=8a-8$$ Now if $a=1$ then $b=-1$ which works. So $a>1$ and now we have $$a^2-6a+4leq 8a-8implies a^2-14a+12leq 0$$
so $$ (a-7)^2leq 37implies |a-7|leq 6...$$
We do similary for all other cases...
$endgroup$
So we have $bin {a-2,a-1,a,a+1,a+2}$
Case 1: $b= a-2$, then $$(a-2)^2-2amid a^2+2(a-2)$$
so $$a^2-6a+4mid a^2+2a-4$$
and thus $$a^2-6a+4mid (a^2+2a-4)-(a^2-6a+4)=8a-8$$ Now if $a=1$ then $b=-1$ which works. So $a>1$ and now we have $$a^2-6a+4leq 8a-8implies a^2-14a+12leq 0$$
so $$ (a-7)^2leq 37implies |a-7|leq 6...$$
We do similary for all other cases...
answered Jan 15 at 19:37
greedoidgreedoid
43.2k1153105
43.2k1153105
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074826%2fdetermine-all-a-and-b-natural-numbers-such-that-frac-a22b-b2-2a-an%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown