Testing series for convergence/divergence
$begingroup$
The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$
Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$
Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?
sequences-and-series convergence
$endgroup$
$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47
add a comment |
$begingroup$
The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$
Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?
sequences-and-series convergence
$endgroup$
The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$
Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?
sequences-and-series convergence
sequences-and-series convergence
edited Jan 15 at 19:39
Math1000
19.1k31745
19.1k31745
asked Jan 15 at 19:37
s0ulr3aper07s0ulr3aper07
414110
414110
$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47
add a comment |
$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47
$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47
$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$ by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$
Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.
If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$
There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$ This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$ for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$ and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$ for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$ for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$ This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$ Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$
$endgroup$
$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06
$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37
$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48
add a comment |
$begingroup$
When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.
$endgroup$
1
$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074857%2ftesting-series-for-convergence-divergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$ by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$
Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.
If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$
There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$ This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$ for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$ and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$ for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$ for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$ This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$ Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$
$endgroup$
$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06
$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37
$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48
add a comment |
$begingroup$
Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$ by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$
Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.
If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$
There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$ This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$ for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$ and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$ for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$ for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$ This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$ Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$
$endgroup$
$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06
$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37
$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48
add a comment |
$begingroup$
Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$ by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$
Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.
If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$
There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$ This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$ for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$ and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$ for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$ for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$ This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$ Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$
$endgroup$
Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$ by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$
Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.
If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$
There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$ This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$ for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$ and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$ for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$ for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$ This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$ Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$
edited Jan 16 at 10:31
answered Jan 15 at 20:27
SongSong
14.2k1633
14.2k1633
$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06
$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37
$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48
add a comment |
$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06
$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37
$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48
$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06
$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06
$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37
$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37
$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48
$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48
add a comment |
$begingroup$
When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.
$endgroup$
1
$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10
add a comment |
$begingroup$
When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.
$endgroup$
1
$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10
add a comment |
$begingroup$
When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.
$endgroup$
When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.
answered Jan 15 at 19:59
GReyesGReyes
1,45515
1,45515
1
$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10
add a comment |
1
$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10
1
1
$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10
$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074857%2ftesting-series-for-convergence-divergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47