Testing series for convergence/divergence












1












$begingroup$


The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$



Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think you will need Stirling formula.
    $endgroup$
    – hamam_Abdallah
    Jan 15 at 19:47
















1












$begingroup$


The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$



Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think you will need Stirling formula.
    $endgroup$
    – hamam_Abdallah
    Jan 15 at 19:47














1












1








1





$begingroup$


The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$



Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?










share|cite|improve this question











$endgroup$




The task is to test the following series for convergence/ divergence:
$$sum_{n=1}^infty frac{(a+nx)^n}{n!}$$



Now, I have been able to use the Ratio Test and establish that the series converges for $x<1/e$ and diverges for $x>1/e$, but testing the series at $x=1/e$ has been a little more challenging. Could someone tell me how I might get the job done?







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 19:39









Math1000

19.1k31745




19.1k31745










asked Jan 15 at 19:37









s0ulr3aper07s0ulr3aper07

414110




414110












  • $begingroup$
    I think you will need Stirling formula.
    $endgroup$
    – hamam_Abdallah
    Jan 15 at 19:47


















  • $begingroup$
    I think you will need Stirling formula.
    $endgroup$
    – hamam_Abdallah
    Jan 15 at 19:47
















$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47




$begingroup$
I think you will need Stirling formula.
$endgroup$
– hamam_Abdallah
Jan 15 at 19:47










2 Answers
2






active

oldest

votes


















2












$begingroup$

Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$
by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$
or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$

Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.



If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$



There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$
This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$
for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$
and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$
for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$
for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$
This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$
Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you further elaborate on the part where you introduce c and C?
    $endgroup$
    – s0ulr3aper07
    Jan 15 at 22:06










  • $begingroup$
    @s0ulr3aper07 I hope this makes it clear ...
    $endgroup$
    – Song
    Jan 15 at 22:37










  • $begingroup$
    Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
    $endgroup$
    – DanielWainfleet
    Jan 16 at 21:48





















0












$begingroup$

When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    And what happens if $x=-1/e$? ;-))
    $endgroup$
    – Mark Viola
    Jan 15 at 20:10













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074857%2ftesting-series-for-convergence-divergence%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$
by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$
or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$

Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.



If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$



There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$
This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$
for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$
and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$
for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$
for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$
This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$
Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you further elaborate on the part where you introduce c and C?
    $endgroup$
    – s0ulr3aper07
    Jan 15 at 22:06










  • $begingroup$
    @s0ulr3aper07 I hope this makes it clear ...
    $endgroup$
    – Song
    Jan 15 at 22:37










  • $begingroup$
    Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
    $endgroup$
    – DanielWainfleet
    Jan 16 at 21:48


















2












$begingroup$

Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$
by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$
or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$

Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.



If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$



There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$
This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$
for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$
and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$
for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$
for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$
This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$
Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you further elaborate on the part where you introduce c and C?
    $endgroup$
    – s0ulr3aper07
    Jan 15 at 22:06










  • $begingroup$
    @s0ulr3aper07 I hope this makes it clear ...
    $endgroup$
    – Song
    Jan 15 at 22:37










  • $begingroup$
    Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
    $endgroup$
    – DanielWainfleet
    Jan 16 at 21:48
















2












2








2





$begingroup$

Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$
by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$
or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$

Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.



If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$



There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$
This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$
for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$
and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$
for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$
for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$
This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$
Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$



Let $x=frac{1}{e}$.
Since $$
frac{(a+frac{n}{e})^n/n!}{(frac{n}{e})^n/n!}=left(1+frac{ae}{n}right)^nto e^{ae},
$$
by the comparison test, $sum_{n=1}^infty a_n<infty $ if and only if $sum_{n=1}^infty frac{(frac{n}{e})^n}{n!}<infty$. So we may assume that $a=0$. By Stirling's formula, we have $$lim_{ntoinfty}frac{n!}{sqrt{2pi n}(frac{n}{e})^n}=1.$$ Since it is a positive sequence with a positive limit, the sequence should be bounded away from $0$ (i.e. have a positive infimum) and have a bounded supremum. So there exist $c>0$ and $C>0$ such that
$$cle frac{sqrt{n}(frac{n}{e})^n}{n!}le C,
$$
or equivalently
$$
frac{c}{sqrt{n}}le frac{(frac{n}{e})^n}{n!}le frac{C}{sqrt{n}}.
$$

Since $sum_n frac{1}{sqrt{n}}=infty$, the series diverges for $x=frac{1}{e}$.



If $x=-frac{1}{e}$, then the series becomes alternating eventually. Therefore, the series converges if and only if $|a_n|to 0$ as $nto infty$. And this follows immediately from Stirling's formula:
$$begin{eqnarray}
lim_{ntoinfty}|a_n|&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{sqrt{2pi n}(frac{n}{e})^n}\
&=&lim_{ntoinfty}frac{1}{sqrt{2pi n}}left(1-frac{ae}{n}right)^n=0.
end{eqnarray}$$



There is an alternative approach avoiding use of Stirling's formula. Note that by Taylor series expansion, we have
$$
log(1+t) = t-frac{t^2}{2}+o(t^2).
$$
This implies that there exists $delta>0$ such that
$$
expleft(t-ct^2right)le 1+tle expleft(t-Ct^2right),quadforall 0le tle delta
$$
for some $cin (frac{1}{2},1)$ and $Cin (0,frac{1}{2})$. Let $$a_n = frac{(frac{n}{e})^n}{n!}.$$ Then
$$
frac{a_{n+1}}{a_n}=frac{1}{e}left(1+frac{1}{n}right)^n,
$$
and hence
$$
expleft(-frac{c}{n}right)lefrac{a_{n+1}}{a_n}le expleft(-frac{C}{n}right)
$$
for all sufficiently large $n$. This gives for all large $n$,
$$
kexpleft(-csum_{j=1}^{n-1}frac{1}{j}right)le a_nle Kexpleft(-Csum_{j=1}^{n-1}frac{1}{j}right)
$$
for some $k>0$ and $K>0$. Using the fact that $int_j^{j+1}frac{dt}{t}lefrac{1}{j}=int_{j-1}^jfrac{1}{j}dtleint_{j-1}^jfrac{dt}{t}$ for $jge 2$, we have
$$
log n=int_1^nfrac{dt}{t}lesum_{j=1}^{n-1}frac{1}{j}le 1+int_1^{n-1}frac{dt}{t}le 1+log n.
$$
This in turn implies
$$
ke^{-c}frac{1}{n^c}le a_n le frac{K}{n^C}.
$$
Now, if $x=frac{1}{e}$, then $sum_n a_n =infty$ follows from $a_nge ke^{-c}frac{1}{n^c}$ for all but finitely many $n$. If $x=-frac{1}{e}$, then $frac{|a-frac{n}{e}|^n}{n!}to 0$ follows from
$$begin{eqnarray}
lim_{ntoinfty}frac{|a-frac{n}{e}|^n}{n!}&=& lim_{ntoinfty}frac{(frac{n}{e}-a)^n}{n!}\
&=&e^{-ae}lim_{ntoinfty}a_n\
&le&e^{-ae}lim_{ntoinfty}frac{K}{n^C}=0.
end{eqnarray}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 16 at 10:31

























answered Jan 15 at 20:27









SongSong

14.2k1633




14.2k1633












  • $begingroup$
    Could you further elaborate on the part where you introduce c and C?
    $endgroup$
    – s0ulr3aper07
    Jan 15 at 22:06










  • $begingroup$
    @s0ulr3aper07 I hope this makes it clear ...
    $endgroup$
    – Song
    Jan 15 at 22:37










  • $begingroup$
    Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
    $endgroup$
    – DanielWainfleet
    Jan 16 at 21:48




















  • $begingroup$
    Could you further elaborate on the part where you introduce c and C?
    $endgroup$
    – s0ulr3aper07
    Jan 15 at 22:06










  • $begingroup$
    @s0ulr3aper07 I hope this makes it clear ...
    $endgroup$
    – Song
    Jan 15 at 22:37










  • $begingroup$
    Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
    $endgroup$
    – DanielWainfleet
    Jan 16 at 21:48


















$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06




$begingroup$
Could you further elaborate on the part where you introduce c and C?
$endgroup$
– s0ulr3aper07
Jan 15 at 22:06












$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37




$begingroup$
@s0ulr3aper07 I hope this makes it clear ...
$endgroup$
– Song
Jan 15 at 22:37












$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48






$begingroup$
Re: Stirling's Formula. For many problems like this, it suffices that $L=lim_{nto infty} (n!)^{-1}(n/e)^n sqrt n$ exists and is positive. That $L=1/sqrt {2pi}$ takes a lot more work to prove.
$endgroup$
– DanielWainfleet
Jan 16 at 21:48













0












$begingroup$

When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    And what happens if $x=-1/e$? ;-))
    $endgroup$
    – Mark Viola
    Jan 15 at 20:10


















0












$begingroup$

When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    And what happens if $x=-1/e$? ;-))
    $endgroup$
    – Mark Viola
    Jan 15 at 20:10
















0












0








0





$begingroup$

When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.






share|cite|improve this answer









$endgroup$



When $x=1/e$ the numerator is equivalent (as $nto infty$) to $(n/e)^n$. Using Stirling's formula for $n!$ your general term is equivalent to $1/sqrt{2pi n}$ and your series is therefore divergent.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 15 at 19:59









GReyesGReyes

1,45515




1,45515








  • 1




    $begingroup$
    And what happens if $x=-1/e$? ;-))
    $endgroup$
    – Mark Viola
    Jan 15 at 20:10
















  • 1




    $begingroup$
    And what happens if $x=-1/e$? ;-))
    $endgroup$
    – Mark Viola
    Jan 15 at 20:10










1




1




$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10






$begingroup$
And what happens if $x=-1/e$? ;-))
$endgroup$
– Mark Viola
Jan 15 at 20:10




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074857%2ftesting-series-for-convergence-divergence%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$