Orthogonal complement of $H_a =left{g in V: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$












0














If $;;V={ f:mathbb{R}rightarrow mathbb{C} |; f text{ is continuous and has period }1}$, $;; langle f | g rangle$ is defined as $ displaystyle langle f | g rangle = int_0^1 overline{f(t)}g(t)dt$, $forall f,g in V;;$ and $displaystyle ;;H_{frac{1}{sqrt{2}}} =left{gin V: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$.



($f text{ has period } 1$)



($g text{ has period } 1 text{ and } frac{1}{sqrt{2}}$)





What can be said about $H_{frac{1}{sqrt{2}}}^perp$?



$H_{frac{1}{sqrt{2}}}^perp = {fin V: langle f | g rangle=0, forall gin H_a }
= left{fin V: langle f | g rangle=0, forall g: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$



$displaystyle 0 = langle f | g rangle = int_0^1 overline{f(t)}g(t)dt
= int_0^1 overline{f(t)}gleft(t+n+frac{m}{sqrt{2}}right)dt, ;; n,m in mathbb{Z}, ;; fin H_{frac{1}{sqrt{2}}}^perp, ;; gin H_{frac{1}{sqrt{2}}}$
.





Related post: Orthogonal complement of $H_a =left{g in V: gleft(t+frac{1}{2}right)=g(t) right}$










share|cite|improve this question






















  • Hint: $mathbb{Z}+mathbb{Z}frac1{sqrt2}$ is dense in $mathbb{R}$.
    – user10354138
    Nov 20 '18 at 13:50










  • @user10354138 What does it mean for a set to be dense in $mathbb{R}$?
    – Filip
    Nov 20 '18 at 13:53
















0














If $;;V={ f:mathbb{R}rightarrow mathbb{C} |; f text{ is continuous and has period }1}$, $;; langle f | g rangle$ is defined as $ displaystyle langle f | g rangle = int_0^1 overline{f(t)}g(t)dt$, $forall f,g in V;;$ and $displaystyle ;;H_{frac{1}{sqrt{2}}} =left{gin V: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$.



($f text{ has period } 1$)



($g text{ has period } 1 text{ and } frac{1}{sqrt{2}}$)





What can be said about $H_{frac{1}{sqrt{2}}}^perp$?



$H_{frac{1}{sqrt{2}}}^perp = {fin V: langle f | g rangle=0, forall gin H_a }
= left{fin V: langle f | g rangle=0, forall g: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$



$displaystyle 0 = langle f | g rangle = int_0^1 overline{f(t)}g(t)dt
= int_0^1 overline{f(t)}gleft(t+n+frac{m}{sqrt{2}}right)dt, ;; n,m in mathbb{Z}, ;; fin H_{frac{1}{sqrt{2}}}^perp, ;; gin H_{frac{1}{sqrt{2}}}$
.





Related post: Orthogonal complement of $H_a =left{g in V: gleft(t+frac{1}{2}right)=g(t) right}$










share|cite|improve this question






















  • Hint: $mathbb{Z}+mathbb{Z}frac1{sqrt2}$ is dense in $mathbb{R}$.
    – user10354138
    Nov 20 '18 at 13:50










  • @user10354138 What does it mean for a set to be dense in $mathbb{R}$?
    – Filip
    Nov 20 '18 at 13:53














0












0








0







If $;;V={ f:mathbb{R}rightarrow mathbb{C} |; f text{ is continuous and has period }1}$, $;; langle f | g rangle$ is defined as $ displaystyle langle f | g rangle = int_0^1 overline{f(t)}g(t)dt$, $forall f,g in V;;$ and $displaystyle ;;H_{frac{1}{sqrt{2}}} =left{gin V: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$.



($f text{ has period } 1$)



($g text{ has period } 1 text{ and } frac{1}{sqrt{2}}$)





What can be said about $H_{frac{1}{sqrt{2}}}^perp$?



$H_{frac{1}{sqrt{2}}}^perp = {fin V: langle f | g rangle=0, forall gin H_a }
= left{fin V: langle f | g rangle=0, forall g: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$



$displaystyle 0 = langle f | g rangle = int_0^1 overline{f(t)}g(t)dt
= int_0^1 overline{f(t)}gleft(t+n+frac{m}{sqrt{2}}right)dt, ;; n,m in mathbb{Z}, ;; fin H_{frac{1}{sqrt{2}}}^perp, ;; gin H_{frac{1}{sqrt{2}}}$
.





Related post: Orthogonal complement of $H_a =left{g in V: gleft(t+frac{1}{2}right)=g(t) right}$










share|cite|improve this question













If $;;V={ f:mathbb{R}rightarrow mathbb{C} |; f text{ is continuous and has period }1}$, $;; langle f | g rangle$ is defined as $ displaystyle langle f | g rangle = int_0^1 overline{f(t)}g(t)dt$, $forall f,g in V;;$ and $displaystyle ;;H_{frac{1}{sqrt{2}}} =left{gin V: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$.



($f text{ has period } 1$)



($g text{ has period } 1 text{ and } frac{1}{sqrt{2}}$)





What can be said about $H_{frac{1}{sqrt{2}}}^perp$?



$H_{frac{1}{sqrt{2}}}^perp = {fin V: langle f | g rangle=0, forall gin H_a }
= left{fin V: langle f | g rangle=0, forall g: gleft(t+frac{1}{sqrt{2}}right)=g(t) right}$



$displaystyle 0 = langle f | g rangle = int_0^1 overline{f(t)}g(t)dt
= int_0^1 overline{f(t)}gleft(t+n+frac{m}{sqrt{2}}right)dt, ;; n,m in mathbb{Z}, ;; fin H_{frac{1}{sqrt{2}}}^perp, ;; gin H_{frac{1}{sqrt{2}}}$
.





Related post: Orthogonal complement of $H_a =left{g in V: gleft(t+frac{1}{2}right)=g(t) right}$







inner-product-space orthogonality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 20 '18 at 13:44









Filip

428




428












  • Hint: $mathbb{Z}+mathbb{Z}frac1{sqrt2}$ is dense in $mathbb{R}$.
    – user10354138
    Nov 20 '18 at 13:50










  • @user10354138 What does it mean for a set to be dense in $mathbb{R}$?
    – Filip
    Nov 20 '18 at 13:53


















  • Hint: $mathbb{Z}+mathbb{Z}frac1{sqrt2}$ is dense in $mathbb{R}$.
    – user10354138
    Nov 20 '18 at 13:50










  • @user10354138 What does it mean for a set to be dense in $mathbb{R}$?
    – Filip
    Nov 20 '18 at 13:53
















Hint: $mathbb{Z}+mathbb{Z}frac1{sqrt2}$ is dense in $mathbb{R}$.
– user10354138
Nov 20 '18 at 13:50




Hint: $mathbb{Z}+mathbb{Z}frac1{sqrt2}$ is dense in $mathbb{R}$.
– user10354138
Nov 20 '18 at 13:50












@user10354138 What does it mean for a set to be dense in $mathbb{R}$?
– Filip
Nov 20 '18 at 13:53




@user10354138 What does it mean for a set to be dense in $mathbb{R}$?
– Filip
Nov 20 '18 at 13:53










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006317%2forthogonal-complement-of-h-a-left-g-in-v-g-leftt-frac1-sqrt2-right%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006317%2forthogonal-complement-of-h-a-left-g-in-v-g-leftt-frac1-sqrt2-right%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]