Another Stubborn Inequality












0












$begingroup$


ReBonjour.
Let $x$ and $y$ be two real numbers. Show that $ frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
Thanks a lot.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If both $x$ and $y$ are zero, then this is false. I think you mean $frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
    $endgroup$
    – R. Burton
    Jan 13 at 20:51












  • $begingroup$
    Corrected. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Jan 13 at 20:53
















0












$begingroup$


ReBonjour.
Let $x$ and $y$ be two real numbers. Show that $ frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
Thanks a lot.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If both $x$ and $y$ are zero, then this is false. I think you mean $frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
    $endgroup$
    – R. Burton
    Jan 13 at 20:51












  • $begingroup$
    Corrected. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Jan 13 at 20:53














0












0








0





$begingroup$


ReBonjour.
Let $x$ and $y$ be two real numbers. Show that $ frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
Thanks a lot.










share|cite|improve this question











$endgroup$




ReBonjour.
Let $x$ and $y$ be two real numbers. Show that $ frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
Thanks a lot.







real-analysis calculus geometry analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 20:52







HAMIDINE SOUMARE

















asked Jan 13 at 16:14









HAMIDINE SOUMAREHAMIDINE SOUMARE

73229




73229












  • $begingroup$
    If both $x$ and $y$ are zero, then this is false. I think you mean $frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
    $endgroup$
    – R. Burton
    Jan 13 at 20:51












  • $begingroup$
    Corrected. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Jan 13 at 20:53


















  • $begingroup$
    If both $x$ and $y$ are zero, then this is false. I think you mean $frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
    $endgroup$
    – R. Burton
    Jan 13 at 20:51












  • $begingroup$
    Corrected. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Jan 13 at 20:53
















$begingroup$
If both $x$ and $y$ are zero, then this is false. I think you mean $frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
$endgroup$
– R. Burton
Jan 13 at 20:51






$begingroup$
If both $x$ and $y$ are zero, then this is false. I think you mean $frac{ |x+y|}{1+|x+y|}leqfrac{|x|}{1+|x|}+frac {|y|}{1+|y|}$
$endgroup$
– R. Burton
Jan 13 at 20:51














$begingroup$
Corrected. Thanks
$endgroup$
– HAMIDINE SOUMARE
Jan 13 at 20:53




$begingroup$
Corrected. Thanks
$endgroup$
– HAMIDINE SOUMARE
Jan 13 at 20:53










2 Answers
2






active

oldest

votes


















1












$begingroup$

Note that the function
$$
f(x)=frac{x}{1+x}
$$

is increasing (by taking derivatives or simply by using the fact that $frac{a}{b}<frac{c}{d}iff ad<bc$) whence
$$
|x+y|leq|x|+|y|
$$

implies that
$$
begin{align}
frac{|x+y|}{1+|x+y|}leqfrac{|x|+|y|}{1+|x|+|y|}&=frac{|x|}{1+|x|+|y|}+frac{|y|}{1+|x|+|y|}\&leq
frac{|x|}{1+|x|}+
frac{|y|}{1+|y|}
end{align}
$$

as desired.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Observe that $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|x|}$$ $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|y|}$$



    So $$2-frac{2}{1+|x+y|}leq 1-frac{1}{1+|x|}+1-frac{1}{1+|y|}$$



    Thus $$frac{2|x+y|}{1+|x+y|}leq frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$



    $$frac{|x+y|}{1+|x+y|}< frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      If $x=y=0$, strict inequality does not occur.
      $endgroup$
      – Aweygan
      Jan 13 at 16:26












    • $begingroup$
      Angelo $x$ is not supposed to be positive. Your argument does not hold.
      $endgroup$
      – HAMIDINE SOUMARE
      Jan 13 at 16:44











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072168%2fanother-stubborn-inequality%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Note that the function
    $$
    f(x)=frac{x}{1+x}
    $$

    is increasing (by taking derivatives or simply by using the fact that $frac{a}{b}<frac{c}{d}iff ad<bc$) whence
    $$
    |x+y|leq|x|+|y|
    $$

    implies that
    $$
    begin{align}
    frac{|x+y|}{1+|x+y|}leqfrac{|x|+|y|}{1+|x|+|y|}&=frac{|x|}{1+|x|+|y|}+frac{|y|}{1+|x|+|y|}\&leq
    frac{|x|}{1+|x|}+
    frac{|y|}{1+|y|}
    end{align}
    $$

    as desired.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Note that the function
      $$
      f(x)=frac{x}{1+x}
      $$

      is increasing (by taking derivatives or simply by using the fact that $frac{a}{b}<frac{c}{d}iff ad<bc$) whence
      $$
      |x+y|leq|x|+|y|
      $$

      implies that
      $$
      begin{align}
      frac{|x+y|}{1+|x+y|}leqfrac{|x|+|y|}{1+|x|+|y|}&=frac{|x|}{1+|x|+|y|}+frac{|y|}{1+|x|+|y|}\&leq
      frac{|x|}{1+|x|}+
      frac{|y|}{1+|y|}
      end{align}
      $$

      as desired.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Note that the function
        $$
        f(x)=frac{x}{1+x}
        $$

        is increasing (by taking derivatives or simply by using the fact that $frac{a}{b}<frac{c}{d}iff ad<bc$) whence
        $$
        |x+y|leq|x|+|y|
        $$

        implies that
        $$
        begin{align}
        frac{|x+y|}{1+|x+y|}leqfrac{|x|+|y|}{1+|x|+|y|}&=frac{|x|}{1+|x|+|y|}+frac{|y|}{1+|x|+|y|}\&leq
        frac{|x|}{1+|x|}+
        frac{|y|}{1+|y|}
        end{align}
        $$

        as desired.






        share|cite|improve this answer









        $endgroup$



        Note that the function
        $$
        f(x)=frac{x}{1+x}
        $$

        is increasing (by taking derivatives or simply by using the fact that $frac{a}{b}<frac{c}{d}iff ad<bc$) whence
        $$
        |x+y|leq|x|+|y|
        $$

        implies that
        $$
        begin{align}
        frac{|x+y|}{1+|x+y|}leqfrac{|x|+|y|}{1+|x|+|y|}&=frac{|x|}{1+|x|+|y|}+frac{|y|}{1+|x|+|y|}\&leq
        frac{|x|}{1+|x|}+
        frac{|y|}{1+|y|}
        end{align}
        $$

        as desired.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 13 at 16:36









        Foobaz JohnFoobaz John

        22.1k41352




        22.1k41352























            0












            $begingroup$

            Observe that $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|x|}$$ $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|y|}$$



            So $$2-frac{2}{1+|x+y|}leq 1-frac{1}{1+|x|}+1-frac{1}{1+|y|}$$



            Thus $$frac{2|x+y|}{1+|x+y|}leq frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$



            $$frac{|x+y|}{1+|x+y|}< frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              If $x=y=0$, strict inequality does not occur.
              $endgroup$
              – Aweygan
              Jan 13 at 16:26












            • $begingroup$
              Angelo $x$ is not supposed to be positive. Your argument does not hold.
              $endgroup$
              – HAMIDINE SOUMARE
              Jan 13 at 16:44
















            0












            $begingroup$

            Observe that $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|x|}$$ $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|y|}$$



            So $$2-frac{2}{1+|x+y|}leq 1-frac{1}{1+|x|}+1-frac{1}{1+|y|}$$



            Thus $$frac{2|x+y|}{1+|x+y|}leq frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$



            $$frac{|x+y|}{1+|x+y|}< frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              If $x=y=0$, strict inequality does not occur.
              $endgroup$
              – Aweygan
              Jan 13 at 16:26












            • $begingroup$
              Angelo $x$ is not supposed to be positive. Your argument does not hold.
              $endgroup$
              – HAMIDINE SOUMARE
              Jan 13 at 16:44














            0












            0








            0





            $begingroup$

            Observe that $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|x|}$$ $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|y|}$$



            So $$2-frac{2}{1+|x+y|}leq 1-frac{1}{1+|x|}+1-frac{1}{1+|y|}$$



            Thus $$frac{2|x+y|}{1+|x+y|}leq frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$



            $$frac{|x+y|}{1+|x+y|}< frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$






            share|cite|improve this answer











            $endgroup$



            Observe that $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|x|}$$ $$1-frac{1}{1+|x+y|}leq 1-frac{1}{1+|y|}$$



            So $$2-frac{2}{1+|x+y|}leq 1-frac{1}{1+|x|}+1-frac{1}{1+|y|}$$



            Thus $$frac{2|x+y|}{1+|x+y|}leq frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$



            $$frac{|x+y|}{1+|x+y|}< frac{|x|}{1+|x|}+frac{|y|}{1+|y|}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 13 at 16:30

























            answered Jan 13 at 16:25









            Angelo MarkAngelo Mark

            4,03721641




            4,03721641












            • $begingroup$
              If $x=y=0$, strict inequality does not occur.
              $endgroup$
              – Aweygan
              Jan 13 at 16:26












            • $begingroup$
              Angelo $x$ is not supposed to be positive. Your argument does not hold.
              $endgroup$
              – HAMIDINE SOUMARE
              Jan 13 at 16:44


















            • $begingroup$
              If $x=y=0$, strict inequality does not occur.
              $endgroup$
              – Aweygan
              Jan 13 at 16:26












            • $begingroup$
              Angelo $x$ is not supposed to be positive. Your argument does not hold.
              $endgroup$
              – HAMIDINE SOUMARE
              Jan 13 at 16:44
















            $begingroup$
            If $x=y=0$, strict inequality does not occur.
            $endgroup$
            – Aweygan
            Jan 13 at 16:26






            $begingroup$
            If $x=y=0$, strict inequality does not occur.
            $endgroup$
            – Aweygan
            Jan 13 at 16:26














            $begingroup$
            Angelo $x$ is not supposed to be positive. Your argument does not hold.
            $endgroup$
            – HAMIDINE SOUMARE
            Jan 13 at 16:44




            $begingroup$
            Angelo $x$ is not supposed to be positive. Your argument does not hold.
            $endgroup$
            – HAMIDINE SOUMARE
            Jan 13 at 16:44


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072168%2fanother-stubborn-inequality%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith