Calculating the probability of a vector of standard normal distributed variables.
$begingroup$
Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?
What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?
probability-distributions
$endgroup$
add a comment |
$begingroup$
Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?
What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?
probability-distributions
$endgroup$
$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58
add a comment |
$begingroup$
Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?
What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?
probability-distributions
$endgroup$
Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?
What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?
probability-distributions
probability-distributions
asked Jan 16 at 23:51
John KeeperJohn Keeper
532315
532315
$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58
add a comment |
$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58
$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58
$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
$$
f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
$$
Then the required probability is given by
$$
p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
$$
by changing to polar coordinates. You should be able to compute the integral.
$endgroup$
add a comment |
$begingroup$
Let $rho(x)$ be the usual standard normal density,
$$
rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
$$
so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
$$
begin{aligned}
p
&=
mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
\
&=
int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
rho(x); rho(y); dx; dy
\
&qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
\
&=
int_{rge 2}
int_{tin(pi/2,pi)}
frac 1{2pi}
exp-frac {r^2}2
cdot
r; dr; dt
\
&=
frac pi 2
int_{rge 2}
frac 1{2pi}
exp-frac {r^2}2
cdot frac 12d(r^2)
\
&=
frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
=frac 14exp(-2)approx 0.0338338208091532dots .
end{aligned}
$$
In such cases i usually also start a computer simulation:
sage: import numpy
sage: N = 10**8 # samples
sage: X = numpy.random.normal(size=N)
sage: Y = numpy.random.normal(size=N)
sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
sage: nr_goodCases = len( V[ V>= 4 ] )
sage: nr_goodCases
3383058
sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
Proportion of good cases ~ 0.03383058
this time...
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076442%2fcalculating-the-probability-of-a-vector-of-standard-normal-distributed-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
$$
f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
$$
Then the required probability is given by
$$
p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
$$
by changing to polar coordinates. You should be able to compute the integral.
$endgroup$
add a comment |
$begingroup$
Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
$$
f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
$$
Then the required probability is given by
$$
p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
$$
by changing to polar coordinates. You should be able to compute the integral.
$endgroup$
add a comment |
$begingroup$
Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
$$
f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
$$
Then the required probability is given by
$$
p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
$$
by changing to polar coordinates. You should be able to compute the integral.
$endgroup$
Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
$$
f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
$$
Then the required probability is given by
$$
p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
$$
by changing to polar coordinates. You should be able to compute the integral.
answered Jan 17 at 0:03


Foobaz JohnFoobaz John
22.1k41452
22.1k41452
add a comment |
add a comment |
$begingroup$
Let $rho(x)$ be the usual standard normal density,
$$
rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
$$
so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
$$
begin{aligned}
p
&=
mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
\
&=
int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
rho(x); rho(y); dx; dy
\
&qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
\
&=
int_{rge 2}
int_{tin(pi/2,pi)}
frac 1{2pi}
exp-frac {r^2}2
cdot
r; dr; dt
\
&=
frac pi 2
int_{rge 2}
frac 1{2pi}
exp-frac {r^2}2
cdot frac 12d(r^2)
\
&=
frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
=frac 14exp(-2)approx 0.0338338208091532dots .
end{aligned}
$$
In such cases i usually also start a computer simulation:
sage: import numpy
sage: N = 10**8 # samples
sage: X = numpy.random.normal(size=N)
sage: Y = numpy.random.normal(size=N)
sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
sage: nr_goodCases = len( V[ V>= 4 ] )
sage: nr_goodCases
3383058
sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
Proportion of good cases ~ 0.03383058
this time...
$endgroup$
add a comment |
$begingroup$
Let $rho(x)$ be the usual standard normal density,
$$
rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
$$
so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
$$
begin{aligned}
p
&=
mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
\
&=
int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
rho(x); rho(y); dx; dy
\
&qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
\
&=
int_{rge 2}
int_{tin(pi/2,pi)}
frac 1{2pi}
exp-frac {r^2}2
cdot
r; dr; dt
\
&=
frac pi 2
int_{rge 2}
frac 1{2pi}
exp-frac {r^2}2
cdot frac 12d(r^2)
\
&=
frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
=frac 14exp(-2)approx 0.0338338208091532dots .
end{aligned}
$$
In such cases i usually also start a computer simulation:
sage: import numpy
sage: N = 10**8 # samples
sage: X = numpy.random.normal(size=N)
sage: Y = numpy.random.normal(size=N)
sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
sage: nr_goodCases = len( V[ V>= 4 ] )
sage: nr_goodCases
3383058
sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
Proportion of good cases ~ 0.03383058
this time...
$endgroup$
add a comment |
$begingroup$
Let $rho(x)$ be the usual standard normal density,
$$
rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
$$
so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
$$
begin{aligned}
p
&=
mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
\
&=
int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
rho(x); rho(y); dx; dy
\
&qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
\
&=
int_{rge 2}
int_{tin(pi/2,pi)}
frac 1{2pi}
exp-frac {r^2}2
cdot
r; dr; dt
\
&=
frac pi 2
int_{rge 2}
frac 1{2pi}
exp-frac {r^2}2
cdot frac 12d(r^2)
\
&=
frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
=frac 14exp(-2)approx 0.0338338208091532dots .
end{aligned}
$$
In such cases i usually also start a computer simulation:
sage: import numpy
sage: N = 10**8 # samples
sage: X = numpy.random.normal(size=N)
sage: Y = numpy.random.normal(size=N)
sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
sage: nr_goodCases = len( V[ V>= 4 ] )
sage: nr_goodCases
3383058
sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
Proportion of good cases ~ 0.03383058
this time...
$endgroup$
Let $rho(x)$ be the usual standard normal density,
$$
rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
$$
so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
$$
begin{aligned}
p
&=
mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
\
&=
int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
rho(x); rho(y); dx; dy
\
&qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
\
&=
int_{rge 2}
int_{tin(pi/2,pi)}
frac 1{2pi}
exp-frac {r^2}2
cdot
r; dr; dt
\
&=
frac pi 2
int_{rge 2}
frac 1{2pi}
exp-frac {r^2}2
cdot frac 12d(r^2)
\
&=
frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
=frac 14exp(-2)approx 0.0338338208091532dots .
end{aligned}
$$
In such cases i usually also start a computer simulation:
sage: import numpy
sage: N = 10**8 # samples
sage: X = numpy.random.normal(size=N)
sage: Y = numpy.random.normal(size=N)
sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
sage: nr_goodCases = len( V[ V>= 4 ] )
sage: nr_goodCases
3383058
sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
Proportion of good cases ~ 0.03383058
this time...
answered Jan 17 at 0:49
dan_fuleadan_fulea
6,6381312
6,6381312
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076442%2fcalculating-the-probability-of-a-vector-of-standard-normal-distributed-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58