Calculating the probability of a vector of standard normal distributed variables.












0












$begingroup$


Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?



What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
    $endgroup$
    – John Douma
    Jan 16 at 23:58
















0












$begingroup$


Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?



What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
    $endgroup$
    – John Douma
    Jan 16 at 23:58














0












0








0





$begingroup$


Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?



What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?










share|cite|improve this question









$endgroup$




Let $X,Y$ be two i.i.d random variables with standard normal distribution which is the probability that the vector $(X,Y)$ to be in the second quadrant with distance to the origin greater than $2$?



What I think I am being asked is to calculate $$mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2leq 4)$$
How do I calculate that probability?







probability-distributions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 16 at 23:51









John KeeperJohn Keeper

532315




532315












  • $begingroup$
    You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
    $endgroup$
    – John Douma
    Jan 16 at 23:58


















  • $begingroup$
    You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
    $endgroup$
    – John Douma
    Jan 16 at 23:58
















$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58




$begingroup$
You have a joint probability of two independent variables so that should make it easier. Also, do you mean $X^2+Y^2gt 4$?
$endgroup$
– John Douma
Jan 16 at 23:58










2 Answers
2






active

oldest

votes


















1












$begingroup$

Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
$$
f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
$$

Then the required probability is given by
$$
p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
$$

by changing to polar coordinates. You should be able to compute the integral.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $rho(x)$ be the usual standard normal density,
    $$
    rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
    $$

    so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
    $$
    begin{aligned}
    p
    &=
    mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
    \
    &=
    int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
    rho(x); rho(y); dx; dy
    \
    &qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
    \
    &=
    int_{rge 2}
    int_{tin(pi/2,pi)}
    frac 1{2pi}
    exp-frac {r^2}2
    cdot
    r; dr; dt
    \
    &=
    frac pi 2
    int_{rge 2}
    frac 1{2pi}
    exp-frac {r^2}2
    cdot frac 12d(r^2)
    \
    &=
    frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
    =frac 14exp(-2)approx 0.0338338208091532dots .
    end{aligned}
    $$



    In such cases i usually also start a computer simulation:



    sage: import numpy
    sage: N = 10**8 # samples
    sage: X = numpy.random.normal(size=N)
    sage: Y = numpy.random.normal(size=N)
    sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
    sage: nr_goodCases = len( V[ V>= 4 ] )
    sage: nr_goodCases
    3383058
    sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
    Proportion of good cases ~ 0.03383058


    this time...






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076442%2fcalculating-the-probability-of-a-vector-of-standard-normal-distributed-variables%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
      $$
      f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
      $$

      Then the required probability is given by
      $$
      p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
      $$

      by changing to polar coordinates. You should be able to compute the integral.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
        $$
        f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
        $$

        Then the required probability is given by
        $$
        p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
        $$

        by changing to polar coordinates. You should be able to compute the integral.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
          $$
          f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
          $$

          Then the required probability is given by
          $$
          p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
          $$

          by changing to polar coordinates. You should be able to compute the integral.






          share|cite|improve this answer









          $endgroup$



          Let $R$ be the region corresponding to the set of points $(x,y)inmathbb{R^2}$ such that $xleq 0$, $ygeq 0$ and $x^2+y^2>4$. Then by independence the joint density of $(X,Y)$ is given by
          $$
          f(x,y)=frac{1}{2pi}expleft(-frac{1}{2}(x^2+y^2)right).
          $$

          Then the required probability is given by
          $$
          p=int_R f(x,y), dx, dy=int_{pi/2}^piint_{2}^inftyfrac{1}{2pi}expleft(-frac{1}{2}r^2right)r, dr,dtheta
          $$

          by changing to polar coordinates. You should be able to compute the integral.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 17 at 0:03









          Foobaz JohnFoobaz John

          22.1k41452




          22.1k41452























              1












              $begingroup$

              Let $rho(x)$ be the usual standard normal density,
              $$
              rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
              $$

              so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
              $$
              begin{aligned}
              p
              &=
              mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
              \
              &=
              int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
              rho(x); rho(y); dx; dy
              \
              &qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
              \
              &=
              int_{rge 2}
              int_{tin(pi/2,pi)}
              frac 1{2pi}
              exp-frac {r^2}2
              cdot
              r; dr; dt
              \
              &=
              frac pi 2
              int_{rge 2}
              frac 1{2pi}
              exp-frac {r^2}2
              cdot frac 12d(r^2)
              \
              &=
              frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
              =frac 14exp(-2)approx 0.0338338208091532dots .
              end{aligned}
              $$



              In such cases i usually also start a computer simulation:



              sage: import numpy
              sage: N = 10**8 # samples
              sage: X = numpy.random.normal(size=N)
              sage: Y = numpy.random.normal(size=N)
              sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
              sage: nr_goodCases = len( V[ V>= 4 ] )
              sage: nr_goodCases
              3383058
              sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
              Proportion of good cases ~ 0.03383058


              this time...






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Let $rho(x)$ be the usual standard normal density,
                $$
                rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
                $$

                so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
                $$
                begin{aligned}
                p
                &=
                mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
                \
                &=
                int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
                rho(x); rho(y); dx; dy
                \
                &qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
                \
                &=
                int_{rge 2}
                int_{tin(pi/2,pi)}
                frac 1{2pi}
                exp-frac {r^2}2
                cdot
                r; dr; dt
                \
                &=
                frac pi 2
                int_{rge 2}
                frac 1{2pi}
                exp-frac {r^2}2
                cdot frac 12d(r^2)
                \
                &=
                frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
                =frac 14exp(-2)approx 0.0338338208091532dots .
                end{aligned}
                $$



                In such cases i usually also start a computer simulation:



                sage: import numpy
                sage: N = 10**8 # samples
                sage: X = numpy.random.normal(size=N)
                sage: Y = numpy.random.normal(size=N)
                sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
                sage: nr_goodCases = len( V[ V>= 4 ] )
                sage: nr_goodCases
                3383058
                sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
                Proportion of good cases ~ 0.03383058


                this time...






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let $rho(x)$ be the usual standard normal density,
                  $$
                  rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
                  $$

                  so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
                  $$
                  begin{aligned}
                  p
                  &=
                  mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
                  \
                  &=
                  int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
                  rho(x); rho(y); dx; dy
                  \
                  &qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
                  \
                  &=
                  int_{rge 2}
                  int_{tin(pi/2,pi)}
                  frac 1{2pi}
                  exp-frac {r^2}2
                  cdot
                  r; dr; dt
                  \
                  &=
                  frac pi 2
                  int_{rge 2}
                  frac 1{2pi}
                  exp-frac {r^2}2
                  cdot frac 12d(r^2)
                  \
                  &=
                  frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
                  =frac 14exp(-2)approx 0.0338338208091532dots .
                  end{aligned}
                  $$



                  In such cases i usually also start a computer simulation:



                  sage: import numpy
                  sage: N = 10**8 # samples
                  sage: X = numpy.random.normal(size=N)
                  sage: Y = numpy.random.normal(size=N)
                  sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
                  sage: nr_goodCases = len( V[ V>= 4 ] )
                  sage: nr_goodCases
                  3383058
                  sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
                  Proportion of good cases ~ 0.03383058


                  this time...






                  share|cite|improve this answer









                  $endgroup$



                  Let $rho(x)$ be the usual standard normal density,
                  $$
                  rho(x)=frac 1{sqrt{2pi}}exp-frac{x^2}2 ,
                  $$

                  so we know the joint density for $(X,Y)$, it is $rho(x)rho(y)$ with respect to the standard Lebesgue mass $dx; dy$, so we have to calculate:
                  $$
                  begin{aligned}
                  p
                  &=
                  mathbb{P}(Xleq 0,Ygeq 0, X^2+Y^2color{red}{geq} 2^2)
                  \
                  &=
                  int_{substack{(x,y)inBbb R^2\x<0\y>0\x^2+y^2ge 2^2}}
                  rho(x); rho(y); dx; dy
                  \
                  &qquadtext{ change of variables }(x,y)=(rcos t,rsin t)
                  \
                  &=
                  int_{rge 2}
                  int_{tin(pi/2,pi)}
                  frac 1{2pi}
                  exp-frac {r^2}2
                  cdot
                  r; dr; dt
                  \
                  &=
                  frac pi 2
                  int_{rge 2}
                  frac 1{2pi}
                  exp-frac {r^2}2
                  cdot frac 12d(r^2)
                  \
                  &=
                  frac 14left[ -exp-frac{r^2}2 right]_{r=2}^infty
                  =frac 14exp(-2)approx 0.0338338208091532dots .
                  end{aligned}
                  $$



                  In such cases i usually also start a computer simulation:



                  sage: import numpy
                  sage: N = 10**8 # samples
                  sage: X = numpy.random.normal(size=N)
                  sage: Y = numpy.random.normal(size=N)
                  sage: V = (X^2+Y^2)[ (X<0) & (Y>0) ]
                  sage: nr_goodCases = len( V[ V>= 4 ] )
                  sage: nr_goodCases
                  3383058
                  sage: print "Proportion of good cases ~ %.8f" % (nr_goodCases / N)
                  Proportion of good cases ~ 0.03383058


                  this time...







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 17 at 0:49









                  dan_fuleadan_fulea

                  6,6381312




                  6,6381312






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076442%2fcalculating-the-probability-of-a-vector-of-standard-normal-distributed-variables%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith