Centralizer of projections
Let $H$ be a Hilbert space and $p, q$ self-adjoint projectors in $B(H)$,
i.e. $$p^2=p=p^* space text{ and } space q^2=q=q^*.$$ Suppose they have the same centralizers $C(p)=C(q)$.
Is it true that $p=pm q$?
Here $C(x)={yin B(H) : yx=xy}$.
Maybe I am asking a well known result but I couldn't find anything about this problem in the literature.
functional-analysis hilbert-spaces operator-algebras compact-operators projection
add a comment |
Let $H$ be a Hilbert space and $p, q$ self-adjoint projectors in $B(H)$,
i.e. $$p^2=p=p^* space text{ and } space q^2=q=q^*.$$ Suppose they have the same centralizers $C(p)=C(q)$.
Is it true that $p=pm q$?
Here $C(x)={yin B(H) : yx=xy}$.
Maybe I am asking a well known result but I couldn't find anything about this problem in the literature.
functional-analysis hilbert-spaces operator-algebras compact-operators projection
2
I think you want to say "Is it true that $p = 1 - q$ or $p = q$". Minus a projection is not a projection.
– Adrián González-Pérez
Nov 20 '18 at 12:45
add a comment |
Let $H$ be a Hilbert space and $p, q$ self-adjoint projectors in $B(H)$,
i.e. $$p^2=p=p^* space text{ and } space q^2=q=q^*.$$ Suppose they have the same centralizers $C(p)=C(q)$.
Is it true that $p=pm q$?
Here $C(x)={yin B(H) : yx=xy}$.
Maybe I am asking a well known result but I couldn't find anything about this problem in the literature.
functional-analysis hilbert-spaces operator-algebras compact-operators projection
Let $H$ be a Hilbert space and $p, q$ self-adjoint projectors in $B(H)$,
i.e. $$p^2=p=p^* space text{ and } space q^2=q=q^*.$$ Suppose they have the same centralizers $C(p)=C(q)$.
Is it true that $p=pm q$?
Here $C(x)={yin B(H) : yx=xy}$.
Maybe I am asking a well known result but I couldn't find anything about this problem in the literature.
functional-analysis hilbert-spaces operator-algebras compact-operators projection
functional-analysis hilbert-spaces operator-algebras compact-operators projection
edited Nov 18 '18 at 8:05
Gaby Alfonso
682315
682315
asked Nov 18 '18 at 6:00
golomorfMath
1427
1427
2
I think you want to say "Is it true that $p = 1 - q$ or $p = q$". Minus a projection is not a projection.
– Adrián González-Pérez
Nov 20 '18 at 12:45
add a comment |
2
I think you want to say "Is it true that $p = 1 - q$ or $p = q$". Minus a projection is not a projection.
– Adrián González-Pérez
Nov 20 '18 at 12:45
2
2
I think you want to say "Is it true that $p = 1 - q$ or $p = q$". Minus a projection is not a projection.
– Adrián González-Pérez
Nov 20 '18 at 12:45
I think you want to say "Is it true that $p = 1 - q$ or $p = q$". Minus a projection is not a projection.
– Adrián González-Pérez
Nov 20 '18 at 12:45
add a comment |
1 Answer
1
active
oldest
votes
Look in Vaughan Jones notes, Exerise 2.1.13. $A$ and $A^ast$ preserve a subspace $K$, ie $A K subset K$ and $A^ast K subset K$ iff $[A,P_K] = 0$, where $P_K$ is the orthogonal projection onto $K$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003182%2fcentralizer-of-projections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Look in Vaughan Jones notes, Exerise 2.1.13. $A$ and $A^ast$ preserve a subspace $K$, ie $A K subset K$ and $A^ast K subset K$ iff $[A,P_K] = 0$, where $P_K$ is the orthogonal projection onto $K$.
add a comment |
Look in Vaughan Jones notes, Exerise 2.1.13. $A$ and $A^ast$ preserve a subspace $K$, ie $A K subset K$ and $A^ast K subset K$ iff $[A,P_K] = 0$, where $P_K$ is the orthogonal projection onto $K$.
add a comment |
Look in Vaughan Jones notes, Exerise 2.1.13. $A$ and $A^ast$ preserve a subspace $K$, ie $A K subset K$ and $A^ast K subset K$ iff $[A,P_K] = 0$, where $P_K$ is the orthogonal projection onto $K$.
Look in Vaughan Jones notes, Exerise 2.1.13. $A$ and $A^ast$ preserve a subspace $K$, ie $A K subset K$ and $A^ast K subset K$ iff $[A,P_K] = 0$, where $P_K$ is the orthogonal projection onto $K$.
answered Nov 20 '18 at 12:46


Adrián González-Pérez
971138
971138
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003182%2fcentralizer-of-projections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
I think you want to say "Is it true that $p = 1 - q$ or $p = q$". Minus a projection is not a projection.
– Adrián González-Pérez
Nov 20 '18 at 12:45