Check my proof that a monotone function has one-sided limits at any point












1












$begingroup$


Here $f:mathbb{R} rightarrow mathbb{R} $.

We consider the case when $f$ is an increasing function.

Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.

Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
$=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$

Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.

Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.

Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
$=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$

Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Here $f:mathbb{R} rightarrow mathbb{R} $.

    We consider the case when $f$ is an increasing function.

    Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.

    Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
    $=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$

    Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.

    Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.

    Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
    $=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$

    Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Here $f:mathbb{R} rightarrow mathbb{R} $.

      We consider the case when $f$ is an increasing function.

      Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.

      Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
      $=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$

      Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.

      Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.

      Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
      $=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$

      Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.










      share|cite|improve this question









      $endgroup$




      Here $f:mathbb{R} rightarrow mathbb{R} $.

      We consider the case when $f$ is an increasing function.

      Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.

      Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
      $=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$

      Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.

      Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.

      Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
      $=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$

      Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.







      limits functions proof-verification






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 13 at 16:15









      JustAnAmateurJustAnAmateur

      876




      876






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you very much for pointing this out!
            $endgroup$
            – JustAnAmateur
            Jan 13 at 16:57











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072173%2fcheck-my-proof-that-a-monotone-function-has-one-sided-limits-at-any-point%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you very much for pointing this out!
            $endgroup$
            – JustAnAmateur
            Jan 13 at 16:57
















          2












          $begingroup$

          It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you very much for pointing this out!
            $endgroup$
            – JustAnAmateur
            Jan 13 at 16:57














          2












          2








          2





          $begingroup$

          It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.






          share|cite|improve this answer









          $endgroup$



          It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 13 at 16:28









          MarkMark

          7,293417




          7,293417












          • $begingroup$
            Thank you very much for pointing this out!
            $endgroup$
            – JustAnAmateur
            Jan 13 at 16:57


















          • $begingroup$
            Thank you very much for pointing this out!
            $endgroup$
            – JustAnAmateur
            Jan 13 at 16:57
















          $begingroup$
          Thank you very much for pointing this out!
          $endgroup$
          – JustAnAmateur
          Jan 13 at 16:57




          $begingroup$
          Thank you very much for pointing this out!
          $endgroup$
          – JustAnAmateur
          Jan 13 at 16:57


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072173%2fcheck-my-proof-that-a-monotone-function-has-one-sided-limits-at-any-point%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          Npm cannot find a required file even through it is in the searched directory