Check my proof that a monotone function has one-sided limits at any point
$begingroup$
Here $f:mathbb{R} rightarrow mathbb{R} $.
We consider the case when $f$ is an increasing function.
Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.
Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
$=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$
Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.
Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.
Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
$=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$
Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.
limits functions proof-verification
$endgroup$
add a comment |
$begingroup$
Here $f:mathbb{R} rightarrow mathbb{R} $.
We consider the case when $f$ is an increasing function.
Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.
Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
$=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$
Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.
Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.
Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
$=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$
Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.
limits functions proof-verification
$endgroup$
add a comment |
$begingroup$
Here $f:mathbb{R} rightarrow mathbb{R} $.
We consider the case when $f$ is an increasing function.
Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.
Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
$=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$
Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.
Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.
Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
$=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$
Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.
limits functions proof-verification
$endgroup$
Here $f:mathbb{R} rightarrow mathbb{R} $.
We consider the case when $f$ is an increasing function.
Let $A={f(x) | x<x_0}$. $A$ is bounded from above by $f(x_0)$,so there exists $alpha in mathbb{R} $ so that $sup A= alpha$.
Let $epsilon >0$. Since $alpha - epsilon < alpha => exists x_1 in mathbb{R}, x_1<x_0$ so that $f(x_1)>alpha - epsilon$.
$=>forall xin (x_1, x_0), alpha - epsilon < f(x_1) le f(x) <alpha + epsilon$
Let $delta_1=x_0 - x_1$.Then $forall xin mathbb{R}, |x-x_0|<delta_1,|f(x)-alpha|<epsilon$,so $lim_{xto x_0^{-}} f(x) =alpha$.
Let $B={f(x) | x>x_0}$. $B$ is bounded from below by $f(x_0)$,so there exists $beta in mathbb{R} $ so that $inf B= beta$.
Let $epsilon_1 >0$. Since $beta + epsilon_1 > beta => exists x_2 in mathbb{R}, x_2>x_0$ so that $f(x_2)<beta + epsilon_1$.
$=>forall xin (x_0, x_2), beta + epsilon_1 > f(x_2) ge f(x) >beta - epsilon_1$
Let $delta_2=x_2 - x_0$.Then $forall xin mathbb{R}, |x-x_0|<delta_2,|f(x)-beta|<epsilon_1$,so $lim_{xto x_0^{+}} f(x) =beta$.
limits functions proof-verification
limits functions proof-verification
asked Jan 13 at 16:15
JustAnAmateurJustAnAmateur
876
876
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.
$endgroup$
$begingroup$
Thank you very much for pointing this out!
$endgroup$
– JustAnAmateur
Jan 13 at 16:57
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072173%2fcheck-my-proof-that-a-monotone-function-has-one-sided-limits-at-any-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.
$endgroup$
$begingroup$
Thank you very much for pointing this out!
$endgroup$
– JustAnAmateur
Jan 13 at 16:57
add a comment |
$begingroup$
It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.
$endgroup$
$begingroup$
Thank you very much for pointing this out!
$endgroup$
– JustAnAmateur
Jan 13 at 16:57
add a comment |
$begingroup$
It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.
$endgroup$
It is really good, there is just one small mistake. When you defined $delta_1$ you wrote the required inequality $|f(x)-alpha|<epsilon$ for all $xinmathbb{R}$ such that $|x-x_0|<delta_1$. But the inequality might not hold if $x>x_0$. This is a one sided limit so you needed to write for all $xinmathbb{R}$ such that $x_0-delta_1<x<x_0$. Same thing when you defined $delta_2$.
answered Jan 13 at 16:28
MarkMark
7,293417
7,293417
$begingroup$
Thank you very much for pointing this out!
$endgroup$
– JustAnAmateur
Jan 13 at 16:57
add a comment |
$begingroup$
Thank you very much for pointing this out!
$endgroup$
– JustAnAmateur
Jan 13 at 16:57
$begingroup$
Thank you very much for pointing this out!
$endgroup$
– JustAnAmateur
Jan 13 at 16:57
$begingroup$
Thank you very much for pointing this out!
$endgroup$
– JustAnAmateur
Jan 13 at 16:57
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072173%2fcheck-my-proof-that-a-monotone-function-has-one-sided-limits-at-any-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown