How to prove that the series $sum n^s e^{-n} (sge 0)$ converges?
$begingroup$
Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.
My attempt using ratio test:
$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$
But how can I proceed from here?
calculus sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.
My attempt using ratio test:
$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$
But how can I proceed from here?
calculus sequences-and-series limits
$endgroup$
2
$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27
add a comment |
$begingroup$
Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.
My attempt using ratio test:
$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$
But how can I proceed from here?
calculus sequences-and-series limits
$endgroup$
Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.
My attempt using ratio test:
$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$
But how can I proceed from here?
calculus sequences-and-series limits
calculus sequences-and-series limits
edited Feb 2 at 17:33
user587192
asked Feb 2 at 17:11
bm1125bm1125
69116
69116
2
$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27
add a comment |
2
$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27
2
2
$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27
$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$
If you need the next step, divide the top and bottom of the fraction by n to get
$$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$
$endgroup$
$begingroup$
Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
$endgroup$
– bm1125
Feb 2 at 17:22
2
$begingroup$
@bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
$endgroup$
– Keatinge
Feb 2 at 17:24
$begingroup$
Thanks for clarification!!
$endgroup$
– bm1125
Feb 2 at 17:30
add a comment |
$begingroup$
Hint The root test is more obvious here:
$$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$
$endgroup$
add a comment |
$begingroup$
Since $n^{1/n} to 1$,
for fixed $s$,
$n^{s/n} to 1$
so
$n^{s/n} < 2$
for all large enough $n$.
Therefore
$begin{array}\
n^se^{-n}
&=(n^{s/n})^{n}e^{-n}\
&=(frac{n^{s/n}}{e})^n\
&<(frac{2}{e})^n
qquadtext{for all large enough } n\
end{array}
$
and the sum of these converges.
$endgroup$
add a comment |
$begingroup$
We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
$$
n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
$$
Note that
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
=&
sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-n}
\
=&
p(n+p)^s e^{-n}
\
=&
frac{n^s}{e^n}
cdot
underbrace{
p(1+p/n)^s
}_{mathrm{limited}}
end{align}
Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
leq &
frac{2pn^s}{e^n}
end{align}
For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097521%2fhow-to-prove-that-the-series-sum-ns-e-n-s-ge-0-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$
If you need the next step, divide the top and bottom of the fraction by n to get
$$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$
$endgroup$
$begingroup$
Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
$endgroup$
– bm1125
Feb 2 at 17:22
2
$begingroup$
@bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
$endgroup$
– Keatinge
Feb 2 at 17:24
$begingroup$
Thanks for clarification!!
$endgroup$
– bm1125
Feb 2 at 17:30
add a comment |
$begingroup$
Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$
If you need the next step, divide the top and bottom of the fraction by n to get
$$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$
$endgroup$
$begingroup$
Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
$endgroup$
– bm1125
Feb 2 at 17:22
2
$begingroup$
@bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
$endgroup$
– Keatinge
Feb 2 at 17:24
$begingroup$
Thanks for clarification!!
$endgroup$
– bm1125
Feb 2 at 17:30
add a comment |
$begingroup$
Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$
If you need the next step, divide the top and bottom of the fraction by n to get
$$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$
$endgroup$
Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$
If you need the next step, divide the top and bottom of the fraction by n to get
$$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$
edited Feb 2 at 17:27
answered Feb 2 at 17:14
KeatingeKeatinge
23228
23228
$begingroup$
Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
$endgroup$
– bm1125
Feb 2 at 17:22
2
$begingroup$
@bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
$endgroup$
– Keatinge
Feb 2 at 17:24
$begingroup$
Thanks for clarification!!
$endgroup$
– bm1125
Feb 2 at 17:30
add a comment |
$begingroup$
Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
$endgroup$
– bm1125
Feb 2 at 17:22
2
$begingroup$
@bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
$endgroup$
– Keatinge
Feb 2 at 17:24
$begingroup$
Thanks for clarification!!
$endgroup$
– bm1125
Feb 2 at 17:30
$begingroup$
Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
$endgroup$
– bm1125
Feb 2 at 17:22
$begingroup$
Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
$endgroup$
– bm1125
Feb 2 at 17:22
2
2
$begingroup$
@bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
$endgroup$
– Keatinge
Feb 2 at 17:24
$begingroup$
@bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
$endgroup$
– Keatinge
Feb 2 at 17:24
$begingroup$
Thanks for clarification!!
$endgroup$
– bm1125
Feb 2 at 17:30
$begingroup$
Thanks for clarification!!
$endgroup$
– bm1125
Feb 2 at 17:30
add a comment |
$begingroup$
Hint The root test is more obvious here:
$$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$
$endgroup$
add a comment |
$begingroup$
Hint The root test is more obvious here:
$$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$
$endgroup$
add a comment |
$begingroup$
Hint The root test is more obvious here:
$$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$
$endgroup$
Hint The root test is more obvious here:
$$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$
answered Feb 2 at 17:40
N. S.N. S.
105k7115210
105k7115210
add a comment |
add a comment |
$begingroup$
Since $n^{1/n} to 1$,
for fixed $s$,
$n^{s/n} to 1$
so
$n^{s/n} < 2$
for all large enough $n$.
Therefore
$begin{array}\
n^se^{-n}
&=(n^{s/n})^{n}e^{-n}\
&=(frac{n^{s/n}}{e})^n\
&<(frac{2}{e})^n
qquadtext{for all large enough } n\
end{array}
$
and the sum of these converges.
$endgroup$
add a comment |
$begingroup$
Since $n^{1/n} to 1$,
for fixed $s$,
$n^{s/n} to 1$
so
$n^{s/n} < 2$
for all large enough $n$.
Therefore
$begin{array}\
n^se^{-n}
&=(n^{s/n})^{n}e^{-n}\
&=(frac{n^{s/n}}{e})^n\
&<(frac{2}{e})^n
qquadtext{for all large enough } n\
end{array}
$
and the sum of these converges.
$endgroup$
add a comment |
$begingroup$
Since $n^{1/n} to 1$,
for fixed $s$,
$n^{s/n} to 1$
so
$n^{s/n} < 2$
for all large enough $n$.
Therefore
$begin{array}\
n^se^{-n}
&=(n^{s/n})^{n}e^{-n}\
&=(frac{n^{s/n}}{e})^n\
&<(frac{2}{e})^n
qquadtext{for all large enough } n\
end{array}
$
and the sum of these converges.
$endgroup$
Since $n^{1/n} to 1$,
for fixed $s$,
$n^{s/n} to 1$
so
$n^{s/n} < 2$
for all large enough $n$.
Therefore
$begin{array}\
n^se^{-n}
&=(n^{s/n})^{n}e^{-n}\
&=(frac{n^{s/n}}{e})^n\
&<(frac{2}{e})^n
qquadtext{for all large enough } n\
end{array}
$
and the sum of these converges.
answered Feb 2 at 18:01
marty cohenmarty cohen
75.6k549130
75.6k549130
add a comment |
add a comment |
$begingroup$
We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
$$
n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
$$
Note that
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
=&
sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-n}
\
=&
p(n+p)^s e^{-n}
\
=&
frac{n^s}{e^n}
cdot
underbrace{
p(1+p/n)^s
}_{mathrm{limited}}
end{align}
Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
leq &
frac{2pn^s}{e^n}
end{align}
For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .
$endgroup$
add a comment |
$begingroup$
We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
$$
n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
$$
Note that
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
=&
sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-n}
\
=&
p(n+p)^s e^{-n}
\
=&
frac{n^s}{e^n}
cdot
underbrace{
p(1+p/n)^s
}_{mathrm{limited}}
end{align}
Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
leq &
frac{2pn^s}{e^n}
end{align}
For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .
$endgroup$
add a comment |
$begingroup$
We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
$$
n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
$$
Note that
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
=&
sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-n}
\
=&
p(n+p)^s e^{-n}
\
=&
frac{n^s}{e^n}
cdot
underbrace{
p(1+p/n)^s
}_{mathrm{limited}}
end{align}
Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
leq &
frac{2pn^s}{e^n}
end{align}
For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .
$endgroup$
We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
$$
n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
$$
Note that
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
=&
sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
\
leq&
sum_{ell=1}^{p}(n+p)^s e^{-n}
\
=&
p(n+p)^s e^{-n}
\
=&
frac{n^s}{e^n}
cdot
underbrace{
p(1+p/n)^s
}_{mathrm{limited}}
end{align}
Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
begin{align}
left|
(n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
right|
leq &
frac{2pn^s}{e^n}
end{align}
For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .
edited Feb 2 at 18:47
answered Feb 2 at 18:40
MathOverviewMathOverview
8,95743164
8,95743164
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097521%2fhow-to-prove-that-the-series-sum-ns-e-n-s-ge-0-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27