How to prove that the series $sum n^s e^{-n} (sge 0)$ converges?












1












$begingroup$



Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.




My attempt using ratio test:



$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$



But how can I proceed from here?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
    $endgroup$
    – Clayton
    Feb 2 at 17:27
















1












$begingroup$



Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.




My attempt using ratio test:



$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$



But how can I proceed from here?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
    $endgroup$
    – Clayton
    Feb 2 at 17:27














1












1








1





$begingroup$



Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.




My attempt using ratio test:



$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$



But how can I proceed from here?










share|cite|improve this question











$endgroup$





Prove that $ sum n^s cdot e^{-n} , s ge 0$ converge.




My attempt using ratio test:



$$ frac{A_{n+1}}{A_n} = frac{(n+1)^s}{e^{n+1}} cdot frac{e^n}{n^s} = frac{(n+1)^s}{ecdot n^s} $$



But how can I proceed from here?







calculus sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 17:33







user587192

















asked Feb 2 at 17:11









bm1125bm1125

69116




69116








  • 2




    $begingroup$
    As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
    $endgroup$
    – Clayton
    Feb 2 at 17:27














  • 2




    $begingroup$
    As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
    $endgroup$
    – Clayton
    Feb 2 at 17:27








2




2




$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27




$begingroup$
As a tip: you don't need $sgeq0$ for convergence. In fact, for any $sinBbb C$, the series will converge absolutely.
$endgroup$
– Clayton
Feb 2 at 17:27










4 Answers
4






active

oldest

votes


















5












$begingroup$

Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$



If you need the next step, divide the top and bottom of the fraction by n to get



$$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
    $endgroup$
    – bm1125
    Feb 2 at 17:22








  • 2




    $begingroup$
    @bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
    $endgroup$
    – Keatinge
    Feb 2 at 17:24












  • $begingroup$
    Thanks for clarification!!
    $endgroup$
    – bm1125
    Feb 2 at 17:30



















4












$begingroup$

Hint The root test is more obvious here:
$$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Since $n^{1/n} to 1$,
    for fixed $s$,
    $n^{s/n} to 1$
    so
    $n^{s/n} < 2$
    for all large enough $n$.
    Therefore



    $begin{array}\
    n^se^{-n}
    &=(n^{s/n})^{n}e^{-n}\
    &=(frac{n^{s/n}}{e})^n\
    &<(frac{2}{e})^n
    qquadtext{for all large enough } n\
    end{array}
    $



    and the sum of these converges.






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
      $$
      n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
      $$

      Note that
      begin{align}
      left|
      (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
      right|
      =&
      sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
      \
      leq&
      sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
      \
      leq&
      sum_{ell=1}^{p}(n+p)^s e^{-n}
      \
      =&
      p(n+p)^s e^{-n}
      \
      =&
      frac{n^s}{e^n}
      cdot
      underbrace{
      p(1+p/n)^s
      }_{mathrm{limited}}
      end{align}

      Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
      begin{align}
      left|
      (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
      right|
      leq &
      frac{2pn^s}{e^n}
      end{align}

      For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .






      share|cite|improve this answer











      $endgroup$














        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097521%2fhow-to-prove-that-the-series-sum-ns-e-n-s-ge-0-converges%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$



        If you need the next step, divide the top and bottom of the fraction by n to get



        $$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
          $endgroup$
          – bm1125
          Feb 2 at 17:22








        • 2




          $begingroup$
          @bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
          $endgroup$
          – Keatinge
          Feb 2 at 17:24












        • $begingroup$
          Thanks for clarification!!
          $endgroup$
          – bm1125
          Feb 2 at 17:30
















        5












        $begingroup$

        Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$



        If you need the next step, divide the top and bottom of the fraction by n to get



        $$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
          $endgroup$
          – bm1125
          Feb 2 at 17:22








        • 2




          $begingroup$
          @bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
          $endgroup$
          – Keatinge
          Feb 2 at 17:24












        • $begingroup$
          Thanks for clarification!!
          $endgroup$
          – bm1125
          Feb 2 at 17:30














        5












        5








        5





        $begingroup$

        Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$



        If you need the next step, divide the top and bottom of the fraction by n to get



        $$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$






        share|cite|improve this answer











        $endgroup$



        Rewrite $$frac{(n+1)^s}{e cdot n^s}$$ as $$left(frac{n+1}{n}right)^s cdot frac{1}{e}$$



        If you need the next step, divide the top and bottom of the fraction by n to get



        $$left(1+frac{1}{n}right)^s cdot frac{1}{e}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Feb 2 at 17:27

























        answered Feb 2 at 17:14









        KeatingeKeatinge

        23228




        23228












        • $begingroup$
          Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
          $endgroup$
          – bm1125
          Feb 2 at 17:22








        • 2




          $begingroup$
          @bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
          $endgroup$
          – Keatinge
          Feb 2 at 17:24












        • $begingroup$
          Thanks for clarification!!
          $endgroup$
          – bm1125
          Feb 2 at 17:30


















        • $begingroup$
          Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
          $endgroup$
          – bm1125
          Feb 2 at 17:22








        • 2




          $begingroup$
          @bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
          $endgroup$
          – Keatinge
          Feb 2 at 17:24












        • $begingroup$
          Thanks for clarification!!
          $endgroup$
          – bm1125
          Feb 2 at 17:30
















        $begingroup$
        Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
        $endgroup$
        – bm1125
        Feb 2 at 17:22






        $begingroup$
        Thanks but actually Im still not sure how it is converge. I understand that the expression $ frac{n+1}{n}^s $ approaches $ e $ when $ n rightarrow infty $ but that doesn't prove that the original series converge. ?
        $endgroup$
        – bm1125
        Feb 2 at 17:22






        2




        2




        $begingroup$
        @bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
        $endgroup$
        – Keatinge
        Feb 2 at 17:24






        $begingroup$
        @bm1125 The whole thing approaches 1/e < 1, not e, so it converges absolutely. The (n+1)/n part converges to just 1, because (n+1)/n = 1 + 1/n
        $endgroup$
        – Keatinge
        Feb 2 at 17:24














        $begingroup$
        Thanks for clarification!!
        $endgroup$
        – bm1125
        Feb 2 at 17:30




        $begingroup$
        Thanks for clarification!!
        $endgroup$
        – bm1125
        Feb 2 at 17:30











        4












        $begingroup$

        Hint The root test is more obvious here:
        $$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$






        share|cite|improve this answer









        $endgroup$


















          4












          $begingroup$

          Hint The root test is more obvious here:
          $$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$






          share|cite|improve this answer









          $endgroup$
















            4












            4








            4





            $begingroup$

            Hint The root test is more obvious here:
            $$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$






            share|cite|improve this answer









            $endgroup$



            Hint The root test is more obvious here:
            $$lim_n sqrt[n]{n^s cdot e^{-n}}= lim_n (sqrt[n]{n})^s e^{-1}= 1^s cdot e^{-1}=frac{1}{e}$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 2 at 17:40









            N. S.N. S.

            105k7115210




            105k7115210























                2












                $begingroup$

                Since $n^{1/n} to 1$,
                for fixed $s$,
                $n^{s/n} to 1$
                so
                $n^{s/n} < 2$
                for all large enough $n$.
                Therefore



                $begin{array}\
                n^se^{-n}
                &=(n^{s/n})^{n}e^{-n}\
                &=(frac{n^{s/n}}{e})^n\
                &<(frac{2}{e})^n
                qquadtext{for all large enough } n\
                end{array}
                $



                and the sum of these converges.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Since $n^{1/n} to 1$,
                  for fixed $s$,
                  $n^{s/n} to 1$
                  so
                  $n^{s/n} < 2$
                  for all large enough $n$.
                  Therefore



                  $begin{array}\
                  n^se^{-n}
                  &=(n^{s/n})^{n}e^{-n}\
                  &=(frac{n^{s/n}}{e})^n\
                  &<(frac{2}{e})^n
                  qquadtext{for all large enough } n\
                  end{array}
                  $



                  and the sum of these converges.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Since $n^{1/n} to 1$,
                    for fixed $s$,
                    $n^{s/n} to 1$
                    so
                    $n^{s/n} < 2$
                    for all large enough $n$.
                    Therefore



                    $begin{array}\
                    n^se^{-n}
                    &=(n^{s/n})^{n}e^{-n}\
                    &=(frac{n^{s/n}}{e})^n\
                    &<(frac{2}{e})^n
                    qquadtext{for all large enough } n\
                    end{array}
                    $



                    and the sum of these converges.






                    share|cite|improve this answer









                    $endgroup$



                    Since $n^{1/n} to 1$,
                    for fixed $s$,
                    $n^{s/n} to 1$
                    so
                    $n^{s/n} < 2$
                    for all large enough $n$.
                    Therefore



                    $begin{array}\
                    n^se^{-n}
                    &=(n^{s/n})^{n}e^{-n}\
                    &=(frac{n^{s/n}}{e})^n\
                    &<(frac{2}{e})^n
                    qquadtext{for all large enough } n\
                    end{array}
                    $



                    and the sum of these converges.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Feb 2 at 18:01









                    marty cohenmarty cohen

                    75.6k549130




                    75.6k549130























                        1












                        $begingroup$

                        We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
                        $$
                        n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
                        $$

                        Note that
                        begin{align}
                        left|
                        (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                        right|
                        =&
                        sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
                        \
                        leq&
                        sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
                        \
                        leq&
                        sum_{ell=1}^{p}(n+p)^s e^{-n}
                        \
                        =&
                        p(n+p)^s e^{-n}
                        \
                        =&
                        frac{n^s}{e^n}
                        cdot
                        underbrace{
                        p(1+p/n)^s
                        }_{mathrm{limited}}
                        end{align}

                        Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
                        begin{align}
                        left|
                        (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                        right|
                        leq &
                        frac{2pn^s}{e^n}
                        end{align}

                        For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .






                        share|cite|improve this answer











                        $endgroup$


















                          1












                          $begingroup$

                          We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
                          $$
                          n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
                          $$

                          Note that
                          begin{align}
                          left|
                          (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                          right|
                          =&
                          sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
                          \
                          leq&
                          sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
                          \
                          leq&
                          sum_{ell=1}^{p}(n+p)^s e^{-n}
                          \
                          =&
                          p(n+p)^s e^{-n}
                          \
                          =&
                          frac{n^s}{e^n}
                          cdot
                          underbrace{
                          p(1+p/n)^s
                          }_{mathrm{limited}}
                          end{align}

                          Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
                          begin{align}
                          left|
                          (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                          right|
                          leq &
                          frac{2pn^s}{e^n}
                          end{align}

                          For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .






                          share|cite|improve this answer











                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
                            $$
                            n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
                            $$

                            Note that
                            begin{align}
                            left|
                            (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                            right|
                            =&
                            sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
                            \
                            leq&
                            sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
                            \
                            leq&
                            sum_{ell=1}^{p}(n+p)^s e^{-n}
                            \
                            =&
                            p(n+p)^s e^{-n}
                            \
                            =&
                            frac{n^s}{e^n}
                            cdot
                            underbrace{
                            p(1+p/n)^s
                            }_{mathrm{limited}}
                            end{align}

                            Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
                            begin{align}
                            left|
                            (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                            right|
                            leq &
                            frac{2pn^s}{e^n}
                            end{align}

                            For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .






                            share|cite|improve this answer











                            $endgroup$



                            We can also use the Cauchy's convergence test. This test tells us that a serie $sum_{k=1}^infty a_k$ is convergent if, and only if, for all $epsilon>0$ there is a $N_epsiloninmathbb{N}-{0}$ such that
                            $$
                            n> N_epsilon implies | a_{k+1}+a_{k+2}+ldots+a_{k+p}|<epsilon quad forall pinmathbb{N}
                            $$

                            Note that
                            begin{align}
                            left|
                            (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                            right|
                            =&
                            sum_{ell=1}^{p}(n+ell)^s e^{-(n+ell)}
                            \
                            leq&
                            sum_{ell=1}^{p}(n+p)^s e^{-(n+ell)}
                            \
                            leq&
                            sum_{ell=1}^{p}(n+p)^s e^{-n}
                            \
                            =&
                            p(n+p)^s e^{-n}
                            \
                            =&
                            frac{n^s}{e^n}
                            cdot
                            underbrace{
                            p(1+p/n)^s
                            }_{mathrm{limited}}
                            end{align}

                            Choose $ N_{p,s}inmathbb{N}$ big enough so that $n> N_{p,s}$ implies $(1+p/n)^s<2$. Then $n>N_{p,s}$ implies
                            begin{align}
                            left|
                            (n+1)^s e^{-(n+1)}+cdots+(n+p)^s e^{-(n+p)}
                            right|
                            leq &
                            frac{2pn^s}{e^n}
                            end{align}

                            For an arbitrary $ epsilon> 0 $ we can choose a large enough $ N_{p,s,epsilon} $ such that $n>N_{p,s,epsilon}$ implies $$frac{2pn^s}{e^n}<epsilon.$$ Choose $N_{epsilon}=max{N_{p,s,epsilon},N_{s,p}}$. Therefore, the convergence of the series follows .







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Feb 2 at 18:47

























                            answered Feb 2 at 18:40









                            MathOverviewMathOverview

                            8,95743164




                            8,95743164






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097521%2fhow-to-prove-that-the-series-sum-ns-e-n-s-ge-0-converges%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                'app-layout' is not a known element: how to share Component with different Modules

                                android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                WPF add header to Image with URL pettitions [duplicate]