Evaluate $sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n}$












1












$begingroup$


I am trying to evaluate
$$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n}$$
where $ninmathbb{Z}$ and $x,zinmathbb{Z}_{2^n}$.



Clearly, if $x=z$, then $sum=2^n$. But I am unsure about when $xneq z$. I believe it to be $=0$ as that would make my problem self-consistent.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    It's a geometric sequence in $y$.
    $endgroup$
    – Simply Beautiful Art
    Jan 16 at 14:39
















1












$begingroup$


I am trying to evaluate
$$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n}$$
where $ninmathbb{Z}$ and $x,zinmathbb{Z}_{2^n}$.



Clearly, if $x=z$, then $sum=2^n$. But I am unsure about when $xneq z$. I believe it to be $=0$ as that would make my problem self-consistent.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    It's a geometric sequence in $y$.
    $endgroup$
    – Simply Beautiful Art
    Jan 16 at 14:39














1












1








1





$begingroup$


I am trying to evaluate
$$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n}$$
where $ninmathbb{Z}$ and $x,zinmathbb{Z}_{2^n}$.



Clearly, if $x=z$, then $sum=2^n$. But I am unsure about when $xneq z$. I believe it to be $=0$ as that would make my problem self-consistent.










share|cite|improve this question









$endgroup$




I am trying to evaluate
$$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n}$$
where $ninmathbb{Z}$ and $x,zinmathbb{Z}_{2^n}$.



Clearly, if $x=z$, then $sum=2^n$. But I am unsure about when $xneq z$. I believe it to be $=0$ as that would make my problem self-consistent.







algebra-precalculus summation exponential-sum






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 16 at 14:36









DanDan

447




447








  • 1




    $begingroup$
    It's a geometric sequence in $y$.
    $endgroup$
    – Simply Beautiful Art
    Jan 16 at 14:39














  • 1




    $begingroup$
    It's a geometric sequence in $y$.
    $endgroup$
    – Simply Beautiful Art
    Jan 16 at 14:39








1




1




$begingroup$
It's a geometric sequence in $y$.
$endgroup$
– Simply Beautiful Art
Jan 16 at 14:39




$begingroup$
It's a geometric sequence in $y$.
$endgroup$
– Simply Beautiful Art
Jan 16 at 14:39










2 Answers
2






active

oldest

votes


















2












$begingroup$

We have two cases:




Case $1$: $z neq x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} a^y = frac{1 - a^{2^n}}{1-a}$$
where $a = Big( e^{2pi i(z-x)/2^n} Big)$ Replacing as @lab bhattacharjee did, we get $0$.




and




Case $2$: $z = x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} e^0 = 2^n$$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    What if $2^n$ divide $z-x$
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 15:15










  • $begingroup$
    that's a remarkable note .. should be added as follows $z neq x $ (mod. $2^n$).
    $endgroup$
    – Ahmad Bazzi
    Jan 16 at 15:26



















1












$begingroup$

$$sum_{y=0}^{2^n-1}(e^{2pi i(z-x)/2^n})^y$$



$$=dfrac{(e^{2pi i(z-x)/2^n})^{2^n}-1}{e^{2pi i(z-x)/2^n}-1}$$



$$=dfrac{e^{2pi i(z-x)}-1}{e^{2pi i(z-x)/2^n}-1}$$



If $z-x$ is integer $$e^{2pi i(z-x)}=(e^{2pi i})^{z-x}=?$$ provided $e^{2pi i(z-x)/2^n}ne1iff2^nnmid(z-x)$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075810%2fevaluate-sum-y-02n-1e2-pi-iyz-x-2n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    We have two cases:




    Case $1$: $z neq x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} a^y = frac{1 - a^{2^n}}{1-a}$$
    where $a = Big( e^{2pi i(z-x)/2^n} Big)$ Replacing as @lab bhattacharjee did, we get $0$.




    and




    Case $2$: $z = x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} e^0 = 2^n$$







    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      What if $2^n$ divide $z-x$
      $endgroup$
      – lab bhattacharjee
      Jan 16 at 15:15










    • $begingroup$
      that's a remarkable note .. should be added as follows $z neq x $ (mod. $2^n$).
      $endgroup$
      – Ahmad Bazzi
      Jan 16 at 15:26
















    2












    $begingroup$

    We have two cases:




    Case $1$: $z neq x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} a^y = frac{1 - a^{2^n}}{1-a}$$
    where $a = Big( e^{2pi i(z-x)/2^n} Big)$ Replacing as @lab bhattacharjee did, we get $0$.




    and




    Case $2$: $z = x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} e^0 = 2^n$$







    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      What if $2^n$ divide $z-x$
      $endgroup$
      – lab bhattacharjee
      Jan 16 at 15:15










    • $begingroup$
      that's a remarkable note .. should be added as follows $z neq x $ (mod. $2^n$).
      $endgroup$
      – Ahmad Bazzi
      Jan 16 at 15:26














    2












    2








    2





    $begingroup$

    We have two cases:




    Case $1$: $z neq x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} a^y = frac{1 - a^{2^n}}{1-a}$$
    where $a = Big( e^{2pi i(z-x)/2^n} Big)$ Replacing as @lab bhattacharjee did, we get $0$.




    and




    Case $2$: $z = x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} e^0 = 2^n$$







    share|cite|improve this answer











    $endgroup$



    We have two cases:




    Case $1$: $z neq x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} a^y = frac{1 - a^{2^n}}{1-a}$$
    where $a = Big( e^{2pi i(z-x)/2^n} Big)$ Replacing as @lab bhattacharjee did, we get $0$.




    and




    Case $2$: $z = x$ (mod. $2^n$) $$sum_{y=0}^{2^n-1}e^{2pi iy(z-x)/2^n} = sum_{y=0}^{2^n-1} e^0 = 2^n$$








    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 16 at 15:33

























    answered Jan 16 at 14:46









    Ahmad BazziAhmad Bazzi

    8,3282824




    8,3282824












    • $begingroup$
      What if $2^n$ divide $z-x$
      $endgroup$
      – lab bhattacharjee
      Jan 16 at 15:15










    • $begingroup$
      that's a remarkable note .. should be added as follows $z neq x $ (mod. $2^n$).
      $endgroup$
      – Ahmad Bazzi
      Jan 16 at 15:26


















    • $begingroup$
      What if $2^n$ divide $z-x$
      $endgroup$
      – lab bhattacharjee
      Jan 16 at 15:15










    • $begingroup$
      that's a remarkable note .. should be added as follows $z neq x $ (mod. $2^n$).
      $endgroup$
      – Ahmad Bazzi
      Jan 16 at 15:26
















    $begingroup$
    What if $2^n$ divide $z-x$
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 15:15




    $begingroup$
    What if $2^n$ divide $z-x$
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 15:15












    $begingroup$
    that's a remarkable note .. should be added as follows $z neq x $ (mod. $2^n$).
    $endgroup$
    – Ahmad Bazzi
    Jan 16 at 15:26




    $begingroup$
    that's a remarkable note .. should be added as follows $z neq x $ (mod. $2^n$).
    $endgroup$
    – Ahmad Bazzi
    Jan 16 at 15:26











    1












    $begingroup$

    $$sum_{y=0}^{2^n-1}(e^{2pi i(z-x)/2^n})^y$$



    $$=dfrac{(e^{2pi i(z-x)/2^n})^{2^n}-1}{e^{2pi i(z-x)/2^n}-1}$$



    $$=dfrac{e^{2pi i(z-x)}-1}{e^{2pi i(z-x)/2^n}-1}$$



    If $z-x$ is integer $$e^{2pi i(z-x)}=(e^{2pi i})^{z-x}=?$$ provided $e^{2pi i(z-x)/2^n}ne1iff2^nnmid(z-x)$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $$sum_{y=0}^{2^n-1}(e^{2pi i(z-x)/2^n})^y$$



      $$=dfrac{(e^{2pi i(z-x)/2^n})^{2^n}-1}{e^{2pi i(z-x)/2^n}-1}$$



      $$=dfrac{e^{2pi i(z-x)}-1}{e^{2pi i(z-x)/2^n}-1}$$



      If $z-x$ is integer $$e^{2pi i(z-x)}=(e^{2pi i})^{z-x}=?$$ provided $e^{2pi i(z-x)/2^n}ne1iff2^nnmid(z-x)$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $$sum_{y=0}^{2^n-1}(e^{2pi i(z-x)/2^n})^y$$



        $$=dfrac{(e^{2pi i(z-x)/2^n})^{2^n}-1}{e^{2pi i(z-x)/2^n}-1}$$



        $$=dfrac{e^{2pi i(z-x)}-1}{e^{2pi i(z-x)/2^n}-1}$$



        If $z-x$ is integer $$e^{2pi i(z-x)}=(e^{2pi i})^{z-x}=?$$ provided $e^{2pi i(z-x)/2^n}ne1iff2^nnmid(z-x)$






        share|cite|improve this answer









        $endgroup$



        $$sum_{y=0}^{2^n-1}(e^{2pi i(z-x)/2^n})^y$$



        $$=dfrac{(e^{2pi i(z-x)/2^n})^{2^n}-1}{e^{2pi i(z-x)/2^n}-1}$$



        $$=dfrac{e^{2pi i(z-x)}-1}{e^{2pi i(z-x)/2^n}-1}$$



        If $z-x$ is integer $$e^{2pi i(z-x)}=(e^{2pi i})^{z-x}=?$$ provided $e^{2pi i(z-x)/2^n}ne1iff2^nnmid(z-x)$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 16 at 14:40









        lab bhattacharjeelab bhattacharjee

        226k15157275




        226k15157275






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075810%2fevaluate-sum-y-02n-1e2-pi-iyz-x-2n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith