Explicit calculation of $int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x$












2












$begingroup$


Is it possible to confirm the value of this integral using the methods of complex analysis or similar?



$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$



Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have the value of the integral. What you're seeking is to confirm this answer.
    $endgroup$
    – David G. Stork
    Jan 13 at 16:05










  • $begingroup$
    Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
    $endgroup$
    – Barry Cipra
    Jan 13 at 16:13
















2












$begingroup$


Is it possible to confirm the value of this integral using the methods of complex analysis or similar?



$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$



Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have the value of the integral. What you're seeking is to confirm this answer.
    $endgroup$
    – David G. Stork
    Jan 13 at 16:05










  • $begingroup$
    Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
    $endgroup$
    – Barry Cipra
    Jan 13 at 16:13














2












2








2


1



$begingroup$


Is it possible to confirm the value of this integral using the methods of complex analysis or similar?



$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$



Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.










share|cite|improve this question











$endgroup$




Is it possible to confirm the value of this integral using the methods of complex analysis or similar?



$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$



Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.







integration complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 17:30









amWhy

1




1










asked Jan 13 at 16:01









SchnarcoSchnarco

1618




1618












  • $begingroup$
    You have the value of the integral. What you're seeking is to confirm this answer.
    $endgroup$
    – David G. Stork
    Jan 13 at 16:05










  • $begingroup$
    Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
    $endgroup$
    – Barry Cipra
    Jan 13 at 16:13


















  • $begingroup$
    You have the value of the integral. What you're seeking is to confirm this answer.
    $endgroup$
    – David G. Stork
    Jan 13 at 16:05










  • $begingroup$
    Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
    $endgroup$
    – Barry Cipra
    Jan 13 at 16:13
















$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05




$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05












$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13




$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13










4 Answers
4






active

oldest

votes


















4












$begingroup$

This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
$$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
{= I} +
int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
I = 2 pi i sum_{k geq 1}
operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
2 pi i frac {4 pi^2 + 3} {96 pi i} -
2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
frac 1 2 = \
frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
frac {pi^2 - 9} {12}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
    $endgroup$
    – user
    Jan 13 at 23:41






  • 1




    $begingroup$
    If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
    $endgroup$
    – Maxim
    Jan 14 at 1:23












  • $begingroup$
    Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
    $endgroup$
    – user
    Jan 14 at 15:05






  • 1




    $begingroup$
    @user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
    $endgroup$
    – Maxim
    Jan 15 at 10:49












  • $begingroup$
    I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
    $endgroup$
    – user
    Jan 15 at 13:28



















3












$begingroup$

This approach is unnecessarily complicated, but quite fun:



As explained in the comments and the other answers, we may write
$$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
We can then use the geometric series, integration by parts and this Laplace transform to obtain
begin{align}
I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
&= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
end{align}

where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
$$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
Now the Fourier series
$$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
and the fractional part integral
$$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
are sufficient to derive the final result
$$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
and thus prove $pi > 3$ in a rather convoluted manner.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      Here is an approach that first converts the integral to a double integral.



      Let
      $$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
      Observe that
      $$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
      Thus the integral can be rewritten as
      $$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
      after a change of order has been made.



      For the inner $x$-integral
      begin{align}
      int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
      &= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
      &= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
      end{align}

      where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
      $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$



      Using the well-known result of
      $$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
      the sum in (2) can be expressed as
      $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$



      On returning to our integral in (1), we have
      begin{align}
      I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
      end{align}

      where
      $$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
      Finding $J$ we have
      begin{align}
      J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
      &= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
      &= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
      &= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
      &= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
      &= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
      &= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
      &= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
      &= -1 + 2 cdot frac{pi^2}{6}\
      &= -1 + frac{pi^2}{3}.
      end{align}



      So finally we have
      $$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
      or
      $$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
      as expected.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072149%2fexplicit-calculation-of-int-0-infty-frac-sin2-arctan-x1x2-exp2%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
        $$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
        underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
        {= I} +
        int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
        I = 2 pi i sum_{k geq 1}
        operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
        frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
        2 pi i frac {4 pi^2 + 3} {96 pi i} -
        2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
        frac 1 2 = \
        frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
        left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
        frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
        frac {pi^2 - 9} {12}.$$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
          $endgroup$
          – user
          Jan 13 at 23:41






        • 1




          $begingroup$
          If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
          $endgroup$
          – Maxim
          Jan 14 at 1:23












        • $begingroup$
          Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
          $endgroup$
          – user
          Jan 14 at 15:05






        • 1




          $begingroup$
          @user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
          $endgroup$
          – Maxim
          Jan 15 at 10:49












        • $begingroup$
          I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
          $endgroup$
          – user
          Jan 15 at 13:28
















        4












        $begingroup$

        This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
        $$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
        underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
        {= I} +
        int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
        I = 2 pi i sum_{k geq 1}
        operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
        frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
        2 pi i frac {4 pi^2 + 3} {96 pi i} -
        2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
        frac 1 2 = \
        frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
        left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
        frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
        frac {pi^2 - 9} {12}.$$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
          $endgroup$
          – user
          Jan 13 at 23:41






        • 1




          $begingroup$
          If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
          $endgroup$
          – Maxim
          Jan 14 at 1:23












        • $begingroup$
          Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
          $endgroup$
          – user
          Jan 14 at 15:05






        • 1




          $begingroup$
          @user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
          $endgroup$
          – Maxim
          Jan 15 at 10:49












        • $begingroup$
          I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
          $endgroup$
          – user
          Jan 15 at 13:28














        4












        4








        4





        $begingroup$

        This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
        $$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
        underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
        {= I} +
        int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
        I = 2 pi i sum_{k geq 1}
        operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
        frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
        2 pi i frac {4 pi^2 + 3} {96 pi i} -
        2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
        frac 1 2 = \
        frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
        left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
        frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
        frac {pi^2 - 9} {12}.$$






        share|cite|improve this answer











        $endgroup$



        This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
        $$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
        underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
        {= I} +
        int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
        I = 2 pi i sum_{k geq 1}
        operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
        frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
        2 pi i frac {4 pi^2 + 3} {96 pi i} -
        2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
        frac 1 2 = \
        frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
        left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
        frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
        frac {pi^2 - 9} {12}.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 13 at 20:41

























        answered Jan 13 at 20:36









        MaximMaxim

        5,5981219




        5,5981219












        • $begingroup$
          How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
          $endgroup$
          – user
          Jan 13 at 23:41






        • 1




          $begingroup$
          If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
          $endgroup$
          – Maxim
          Jan 14 at 1:23












        • $begingroup$
          Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
          $endgroup$
          – user
          Jan 14 at 15:05






        • 1




          $begingroup$
          @user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
          $endgroup$
          – Maxim
          Jan 15 at 10:49












        • $begingroup$
          I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
          $endgroup$
          – user
          Jan 15 at 13:28


















        • $begingroup$
          How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
          $endgroup$
          – user
          Jan 13 at 23:41






        • 1




          $begingroup$
          If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
          $endgroup$
          – Maxim
          Jan 14 at 1:23












        • $begingroup$
          Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
          $endgroup$
          – user
          Jan 14 at 15:05






        • 1




          $begingroup$
          @user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
          $endgroup$
          – Maxim
          Jan 15 at 10:49












        • $begingroup$
          I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
          $endgroup$
          – user
          Jan 15 at 13:28
















        $begingroup$
        How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
        $endgroup$
        – user
        Jan 13 at 23:41




        $begingroup$
        How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
        $endgroup$
        – user
        Jan 13 at 23:41




        1




        1




        $begingroup$
        If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
        $endgroup$
        – Maxim
        Jan 14 at 1:23






        $begingroup$
        If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
        $endgroup$
        – Maxim
        Jan 14 at 1:23














        $begingroup$
        Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
        $endgroup$
        – user
        Jan 14 at 15:05




        $begingroup$
        Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
        $endgroup$
        – user
        Jan 14 at 15:05




        1




        1




        $begingroup$
        @user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
        $endgroup$
        – Maxim
        Jan 15 at 10:49






        $begingroup$
        @user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
        $endgroup$
        – Maxim
        Jan 15 at 10:49














        $begingroup$
        I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
        $endgroup$
        – user
        Jan 15 at 13:28




        $begingroup$
        I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
        $endgroup$
        – user
        Jan 15 at 13:28











        3












        $begingroup$

        This approach is unnecessarily complicated, but quite fun:



        As explained in the comments and the other answers, we may write
        $$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
        We can then use the geometric series, integration by parts and this Laplace transform to obtain
        begin{align}
        I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
        &= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
        end{align}

        where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
        $$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
        Now the Fourier series
        $$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
        and the fractional part integral
        $$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
        are sufficient to derive the final result
        $$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
        and thus prove $pi > 3$ in a rather convoluted manner.






        share|cite|improve this answer









        $endgroup$


















          3












          $begingroup$

          This approach is unnecessarily complicated, but quite fun:



          As explained in the comments and the other answers, we may write
          $$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
          We can then use the geometric series, integration by parts and this Laplace transform to obtain
          begin{align}
          I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
          &= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
          end{align}

          where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
          $$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
          Now the Fourier series
          $$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
          and the fractional part integral
          $$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
          are sufficient to derive the final result
          $$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
          and thus prove $pi > 3$ in a rather convoluted manner.






          share|cite|improve this answer









          $endgroup$
















            3












            3








            3





            $begingroup$

            This approach is unnecessarily complicated, but quite fun:



            As explained in the comments and the other answers, we may write
            $$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
            We can then use the geometric series, integration by parts and this Laplace transform to obtain
            begin{align}
            I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
            &= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
            end{align}

            where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
            $$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
            Now the Fourier series
            $$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
            and the fractional part integral
            $$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
            are sufficient to derive the final result
            $$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
            and thus prove $pi > 3$ in a rather convoluted manner.






            share|cite|improve this answer









            $endgroup$



            This approach is unnecessarily complicated, but quite fun:



            As explained in the comments and the other answers, we may write
            $$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
            We can then use the geometric series, integration by parts and this Laplace transform to obtain
            begin{align}
            I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
            &= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
            end{align}

            where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
            $$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
            Now the Fourier series
            $$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
            and the fractional part integral
            $$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
            are sufficient to derive the final result
            $$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
            and thus prove $pi > 3$ in a rather convoluted manner.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 13 at 18:59









            ComplexYetTrivialComplexYetTrivial

            4,5512631




            4,5512631























                2












                $begingroup$

                Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.






                    share|cite|improve this answer









                    $endgroup$



                    Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 13 at 16:17









                    aledenaleden

                    2,352511




                    2,352511























                        2












                        $begingroup$

                        Here is an approach that first converts the integral to a double integral.



                        Let
                        $$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
                        Observe that
                        $$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
                        Thus the integral can be rewritten as
                        $$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
                        after a change of order has been made.



                        For the inner $x$-integral
                        begin{align}
                        int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
                        &= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
                        &= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
                        end{align}

                        where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
                        $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$



                        Using the well-known result of
                        $$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
                        the sum in (2) can be expressed as
                        $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$



                        On returning to our integral in (1), we have
                        begin{align}
                        I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
                        end{align}

                        where
                        $$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
                        Finding $J$ we have
                        begin{align}
                        J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
                        &= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
                        &= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
                        &= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
                        &= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
                        &= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
                        &= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
                        &= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
                        &= -1 + 2 cdot frac{pi^2}{6}\
                        &= -1 + frac{pi^2}{3}.
                        end{align}



                        So finally we have
                        $$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
                        or
                        $$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
                        as expected.






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          Here is an approach that first converts the integral to a double integral.



                          Let
                          $$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
                          Observe that
                          $$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
                          Thus the integral can be rewritten as
                          $$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
                          after a change of order has been made.



                          For the inner $x$-integral
                          begin{align}
                          int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
                          &= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
                          &= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
                          end{align}

                          where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
                          $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$



                          Using the well-known result of
                          $$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
                          the sum in (2) can be expressed as
                          $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$



                          On returning to our integral in (1), we have
                          begin{align}
                          I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
                          end{align}

                          where
                          $$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
                          Finding $J$ we have
                          begin{align}
                          J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
                          &= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
                          &= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
                          &= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
                          &= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
                          &= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
                          &= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
                          &= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
                          &= -1 + 2 cdot frac{pi^2}{6}\
                          &= -1 + frac{pi^2}{3}.
                          end{align}



                          So finally we have
                          $$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
                          or
                          $$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
                          as expected.






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            Here is an approach that first converts the integral to a double integral.



                            Let
                            $$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
                            Observe that
                            $$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
                            Thus the integral can be rewritten as
                            $$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
                            after a change of order has been made.



                            For the inner $x$-integral
                            begin{align}
                            int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
                            &= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
                            &= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
                            end{align}

                            where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
                            $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$



                            Using the well-known result of
                            $$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
                            the sum in (2) can be expressed as
                            $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$



                            On returning to our integral in (1), we have
                            begin{align}
                            I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
                            end{align}

                            where
                            $$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
                            Finding $J$ we have
                            begin{align}
                            J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
                            &= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
                            &= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
                            &= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
                            &= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
                            &= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
                            &= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
                            &= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
                            &= -1 + 2 cdot frac{pi^2}{6}\
                            &= -1 + frac{pi^2}{3}.
                            end{align}



                            So finally we have
                            $$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
                            or
                            $$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
                            as expected.






                            share|cite|improve this answer









                            $endgroup$



                            Here is an approach that first converts the integral to a double integral.



                            Let
                            $$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
                            Observe that
                            $$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
                            Thus the integral can be rewritten as
                            $$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
                            after a change of order has been made.



                            For the inner $x$-integral
                            begin{align}
                            int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
                            &= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
                            &= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
                            end{align}

                            where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
                            $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$



                            Using the well-known result of
                            $$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
                            the sum in (2) can be expressed as
                            $$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$



                            On returning to our integral in (1), we have
                            begin{align}
                            I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
                            end{align}

                            where
                            $$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
                            Finding $J$ we have
                            begin{align}
                            J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
                            &= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
                            &= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
                            &= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
                            &= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
                            &= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
                            &= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
                            &= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
                            &= -1 + 2 cdot frac{pi^2}{6}\
                            &= -1 + frac{pi^2}{3}.
                            end{align}



                            So finally we have
                            $$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
                            or
                            $$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
                            as expected.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 16 at 5:53









                            omegadotomegadot

                            5,9122728




                            5,9122728






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072149%2fexplicit-calculation-of-int-0-infty-frac-sin2-arctan-x1x2-exp2%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                Npm cannot find a required file even through it is in the searched directory