Explicit calculation of $int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x$
$begingroup$
Is it possible to confirm the value of this integral using the methods of complex analysis or similar?
$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$
Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.
integration complex-analysis
$endgroup$
add a comment |
$begingroup$
Is it possible to confirm the value of this integral using the methods of complex analysis or similar?
$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$
Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.
integration complex-analysis
$endgroup$
$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05
$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13
add a comment |
$begingroup$
Is it possible to confirm the value of this integral using the methods of complex analysis or similar?
$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$
Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.
integration complex-analysis
$endgroup$
Is it possible to confirm the value of this integral using the methods of complex analysis or similar?
$$
int_0^{infty} frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)}mathrm{d}x=frac{pi^2-9}{12}
$$
Of course, one can reduce it to the definition of the polylogarithm and a $zeta$-function, but I was looking for an explicit calculation.
integration complex-analysis
integration complex-analysis
edited Jan 13 at 17:30


amWhy
1
1
asked Jan 13 at 16:01
SchnarcoSchnarco
1618
1618
$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05
$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13
add a comment |
$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05
$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13
$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05
$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05
$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13
$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
$$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
{= I} +
int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
I = 2 pi i sum_{k geq 1}
operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
2 pi i frac {4 pi^2 + 3} {96 pi i} -
2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
frac 1 2 = \
frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
frac {pi^2 - 9} {12}.$$
$endgroup$
$begingroup$
How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
$endgroup$
– user
Jan 13 at 23:41
1
$begingroup$
If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
$endgroup$
– Maxim
Jan 14 at 1:23
$begingroup$
Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
$endgroup$
– user
Jan 14 at 15:05
1
$begingroup$
@user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
$endgroup$
– Maxim
Jan 15 at 10:49
$begingroup$
I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
$endgroup$
– user
Jan 15 at 13:28
add a comment |
$begingroup$
This approach is unnecessarily complicated, but quite fun:
As explained in the comments and the other answers, we may write
$$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
We can then use the geometric series, integration by parts and this Laplace transform to obtain
begin{align}
I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
&= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
end{align}
where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
$$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
Now the Fourier series
$$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
and the fractional part integral
$$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
are sufficient to derive the final result
$$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
and thus prove $pi > 3$ in a rather convoluted manner.
$endgroup$
add a comment |
$begingroup$
Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.
$endgroup$
add a comment |
$begingroup$
Here is an approach that first converts the integral to a double integral.
Let
$$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
Observe that
$$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
Thus the integral can be rewritten as
$$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
after a change of order has been made.
For the inner $x$-integral
begin{align}
int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
&= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
&= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
end{align}
where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$
Using the well-known result of
$$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
the sum in (2) can be expressed as
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$
On returning to our integral in (1), we have
begin{align}
I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
end{align}
where
$$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
Finding $J$ we have
begin{align}
J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
&= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
&= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
&= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
&= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
&= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
&= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
&= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
&= -1 + 2 cdot frac{pi^2}{6}\
&= -1 + frac{pi^2}{3}.
end{align}
So finally we have
$$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
or
$$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
as expected.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072149%2fexplicit-calculation-of-int-0-infty-frac-sin2-arctan-x1x2-exp2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
$$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
{= I} +
int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
I = 2 pi i sum_{k geq 1}
operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
2 pi i frac {4 pi^2 + 3} {96 pi i} -
2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
frac 1 2 = \
frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
frac {pi^2 - 9} {12}.$$
$endgroup$
$begingroup$
How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
$endgroup$
– user
Jan 13 at 23:41
1
$begingroup$
If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
$endgroup$
– Maxim
Jan 14 at 1:23
$begingroup$
Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
$endgroup$
– user
Jan 14 at 15:05
1
$begingroup$
@user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
$endgroup$
– Maxim
Jan 15 at 10:49
$begingroup$
I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
$endgroup$
– user
Jan 15 at 13:28
add a comment |
$begingroup$
This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
$$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
{= I} +
int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
I = 2 pi i sum_{k geq 1}
operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
2 pi i frac {4 pi^2 + 3} {96 pi i} -
2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
frac 1 2 = \
frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
frac {pi^2 - 9} {12}.$$
$endgroup$
$begingroup$
How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
$endgroup$
– user
Jan 13 at 23:41
1
$begingroup$
If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
$endgroup$
– Maxim
Jan 14 at 1:23
$begingroup$
Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
$endgroup$
– user
Jan 14 at 15:05
1
$begingroup$
@user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
$endgroup$
– Maxim
Jan 15 at 10:49
$begingroup$
I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
$endgroup$
– user
Jan 15 at 13:28
add a comment |
$begingroup$
This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
$$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
{= I} +
int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
I = 2 pi i sum_{k geq 1}
operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
2 pi i frac {4 pi^2 + 3} {96 pi i} -
2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
frac 1 2 = \
frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
frac {pi^2 - 9} {12}.$$
$endgroup$
This will require some calculations but no special functions. Making the change of variables $x = -x$ on $mathbb R^-$, we obtain
$$int_{mathbb R} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx =
underbrace {int_{mathbb R^+} frac {2 x} {(x^2 + 1)^2 (e^{2 pi x} - 1)} dx}_
{= I} +
int_{mathbb R^+} frac x {(x^2 + 1)^2} dx, \
I = 2 pi i sum_{k geq 1}
operatorname*{Res}_{x = i k} frac x {(x^2 + 1)^2 (e^{2 pi x} - 1)} +
frac 1 {2 (x^2 + 1)} biggrvert_{x = 0}^infty = \
2 pi i frac {4 pi^2 + 3} {96 pi i} -
2 pi i sum_{k geq 2} frac k {2 pi i (k^2 - 1)^2} -
frac 1 2 = \
frac {4 pi^3 - 21} {48} - frac 1 4 sum_{k geq 2}
left( frac 1 {(k - 1)^2} - frac 1 {(k + 1)^2} right) = \
frac {4 pi^3 - 21} {48} - frac 1 4 left( 1 + frac 1 4 right) =
frac {pi^2 - 9} {12}.$$
edited Jan 13 at 20:41
answered Jan 13 at 20:36
MaximMaxim
5,5981219
5,5981219
$begingroup$
How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
$endgroup$
– user
Jan 13 at 23:41
1
$begingroup$
If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
$endgroup$
– Maxim
Jan 14 at 1:23
$begingroup$
Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
$endgroup$
– user
Jan 14 at 15:05
1
$begingroup$
@user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
$endgroup$
– Maxim
Jan 15 at 10:49
$begingroup$
I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
$endgroup$
– user
Jan 15 at 13:28
add a comment |
$begingroup$
How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
$endgroup$
– user
Jan 13 at 23:41
1
$begingroup$
If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
$endgroup$
– Maxim
Jan 14 at 1:23
$begingroup$
Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
$endgroup$
– user
Jan 14 at 15:05
1
$begingroup$
@user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
$endgroup$
– Maxim
Jan 15 at 10:49
$begingroup$
I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
$endgroup$
– user
Jan 15 at 13:28
$begingroup$
How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
$endgroup$
– user
Jan 13 at 23:41
$begingroup$
How did you get the term $int_{mathbb R^+} frac x {(x^2 + 1)^2} dx$? What kind of integration contour did you use to be able to apply residue method?
$endgroup$
– user
Jan 13 at 23:41
1
1
$begingroup$
If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
$endgroup$
– Maxim
Jan 14 at 1:23
$begingroup$
If $f(x) = x/((x^2 + 1)^2 (e^{2 pi x} - 1))$, $f(x) + f(-x) = 2 f(x) + x/(x^2 + 1)^2$. To evaluate $int_{mathbb R} f(x) dx$, take the sequence of contours consisting of $[-k - 1/2, k + 1/2]$ plus a half-circle on that diameter.
$endgroup$
– Maxim
Jan 14 at 1:23
$begingroup$
Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
$endgroup$
– user
Jan 14 at 15:05
$begingroup$
Could you demonstrate that the integral over the semicircle tends to 0, as $ktoinfty$? It should be enough to prove $|expleft(pi(2k+1)e^{iphi}right)-1|>M$ with a positive constant $M$.
$endgroup$
– user
Jan 14 at 15:05
1
1
$begingroup$
@user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
$endgroup$
– Maxim
Jan 15 at 10:49
$begingroup$
@user In fact, to make things simpler, take the polyline $$left[ k + frac 1 2, k + frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 + i left( k + frac 1 2 right), -k - frac 1 2 right]$$ instead of a semicircle. On the vertical segments, $$|e^{2 pi x} - 1| geq ||e^{2 pi x}| - 1| = |e^{2 pi operatorname{Re} x} - 1|.$$ On the horizontal segment, $$|{e^{2 pi x} - 1}| = |{e^{2 pi(operatorname {Re} x + i(k + 1/2))} - 1}| = e^{2 pi operatorname{Re} x} + 1.$$
$endgroup$
– Maxim
Jan 15 at 10:49
$begingroup$
I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
$endgroup$
– user
Jan 15 at 13:28
$begingroup$
I am convinced (+1). Consider a possibility to add the clarifications you made in the answer.
$endgroup$
– user
Jan 15 at 13:28
add a comment |
$begingroup$
This approach is unnecessarily complicated, but quite fun:
As explained in the comments and the other answers, we may write
$$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
We can then use the geometric series, integration by parts and this Laplace transform to obtain
begin{align}
I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
&= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
end{align}
where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
$$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
Now the Fourier series
$$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
and the fractional part integral
$$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
are sufficient to derive the final result
$$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
and thus prove $pi > 3$ in a rather convoluted manner.
$endgroup$
add a comment |
$begingroup$
This approach is unnecessarily complicated, but quite fun:
As explained in the comments and the other answers, we may write
$$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
We can then use the geometric series, integration by parts and this Laplace transform to obtain
begin{align}
I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
&= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
end{align}
where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
$$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
Now the Fourier series
$$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
and the fractional part integral
$$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
are sufficient to derive the final result
$$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
and thus prove $pi > 3$ in a rather convoluted manner.
$endgroup$
add a comment |
$begingroup$
This approach is unnecessarily complicated, but quite fun:
As explained in the comments and the other answers, we may write
$$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
We can then use the geometric series, integration by parts and this Laplace transform to obtain
begin{align}
I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
&= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
end{align}
where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
$$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
Now the Fourier series
$$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
and the fractional part integral
$$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
are sufficient to derive the final result
$$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
and thus prove $pi > 3$ in a rather convoluted manner.
$endgroup$
This approach is unnecessarily complicated, but quite fun:
As explained in the comments and the other answers, we may write
$$ I equiv int limits_0^infty frac{sin(2arctan x)}{(1+x^2)(exp(2pi x)-1)} , mathrm{d}x = int limits_0^infty frac{2 x}{(1+x^2)(mathrm{e}^{2pi x}-1)} , mathrm{d} x , . $$
We can then use the geometric series, integration by parts and this Laplace transform to obtain
begin{align}
I &= sum limits_{n=1}^infty int limits_0^infty frac{2 x}{(1+x^2)^2} mathrm{e}^{-2 pi n x} , mathrm{d} x = sum limits_{n=1}^infty left[1 - 2 pi n int limits_0^infty frac{mathrm{e}^{-2 pi n x}}{1+x^2} , mathrm{d} x right] \
&= sum limits_{n=1}^infty left[1 - 2 pi n left(frac{pi}{2} - operatorname{Si}(2 pi n)right)right] , ,
end{align}
where $operatorname{Si}$ is the sine integral . Plugging in its definition and integrating by parts twice more we arrive at
$$ I = sum limits_{n=1}^infty left[1 - 2 pi n int limits_1^infty frac{sin(2 pi n t)}{t} , mathrm{d} t right] = 2 sum limits_{n=1}^infty frac{1}{2 pi n} int limits_1^infty frac{sin(2 pi n t)}{t^3} , mathrm{d} t , .$$
Now the Fourier series
$$ 1 - 2 {t} = 4 sum limits_{n=1}^infty frac{sin(2 pi n t)}{2 pi n} , , , t in mathbb{R} , , $$
and the fractional part integral
$$ int limits_0^1 x left{frac{1}{x}right} , mathrm{d} t = int limits_1^infty frac{{t}}{t^3} , mathrm{d} t = 1 - frac{zeta(2)}{2} = 1 - frac{pi^2}{12} $$
are sufficient to derive the final result
$$ I = frac{1}{2} int limits_1^infty frac{1 - 2{t}}{t^3} , mathrm{d} t = frac{pi^2}{12} - frac{3}{4} = frac{pi^2 - 9}{12} $$
and thus prove $pi > 3$ in a rather convoluted manner.
answered Jan 13 at 18:59
ComplexYetTrivialComplexYetTrivial
4,5512631
4,5512631
add a comment |
add a comment |
$begingroup$
Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.
$endgroup$
add a comment |
$begingroup$
Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.
$endgroup$
add a comment |
$begingroup$
Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.
$endgroup$
Not an answer but I believe that the form below is better for contour integration $$int_0^infty frac{sin(2arctan(x))}{(1+x^2)(e^{2pi x} -1)}dx=2int_0^infty frac{sin(arctan(x))cos(arctan(x))}{(1+x^2)(e^{2 pi x} -1)}dx=2int_0^infty frac{x}{(1+x^2)^2 (e^{2 pi x} -1)}dx$$ Now all that remains is to find a suitable contour that includes $[0,infty)$, and apply residue theorem.
answered Jan 13 at 16:17
aledenaleden
2,352511
2,352511
add a comment |
add a comment |
$begingroup$
Here is an approach that first converts the integral to a double integral.
Let
$$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
Observe that
$$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
Thus the integral can be rewritten as
$$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
after a change of order has been made.
For the inner $x$-integral
begin{align}
int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
&= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
&= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
end{align}
where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$
Using the well-known result of
$$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
the sum in (2) can be expressed as
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$
On returning to our integral in (1), we have
begin{align}
I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
end{align}
where
$$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
Finding $J$ we have
begin{align}
J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
&= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
&= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
&= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
&= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
&= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
&= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
&= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
&= -1 + 2 cdot frac{pi^2}{6}\
&= -1 + frac{pi^2}{3}.
end{align}
So finally we have
$$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
or
$$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
as expected.
$endgroup$
add a comment |
$begingroup$
Here is an approach that first converts the integral to a double integral.
Let
$$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
Observe that
$$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
Thus the integral can be rewritten as
$$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
after a change of order has been made.
For the inner $x$-integral
begin{align}
int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
&= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
&= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
end{align}
where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$
Using the well-known result of
$$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
the sum in (2) can be expressed as
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$
On returning to our integral in (1), we have
begin{align}
I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
end{align}
where
$$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
Finding $J$ we have
begin{align}
J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
&= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
&= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
&= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
&= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
&= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
&= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
&= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
&= -1 + 2 cdot frac{pi^2}{6}\
&= -1 + frac{pi^2}{3}.
end{align}
So finally we have
$$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
or
$$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
as expected.
$endgroup$
add a comment |
$begingroup$
Here is an approach that first converts the integral to a double integral.
Let
$$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
Observe that
$$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
Thus the integral can be rewritten as
$$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
after a change of order has been made.
For the inner $x$-integral
begin{align}
int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
&= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
&= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
end{align}
where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$
Using the well-known result of
$$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
the sum in (2) can be expressed as
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$
On returning to our integral in (1), we have
begin{align}
I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
end{align}
where
$$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
Finding $J$ we have
begin{align}
J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
&= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
&= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
&= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
&= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
&= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
&= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
&= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
&= -1 + 2 cdot frac{pi^2}{6}\
&= -1 + frac{pi^2}{3}.
end{align}
So finally we have
$$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
or
$$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
as expected.
$endgroup$
Here is an approach that first converts the integral to a double integral.
Let
$$I = int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = 2 int_0^infty frac{x}{(1 + x^2)^2 (e^{2 pi x} - 1)} , dx.$$
Observe that
$$frac{1}{2} int_0^infty y e^{-y} sin (xy) , dy = frac{x}{(1 + x^2)^2}.$$
Thus the integral can be rewritten as
$$I = int_0^infty y e^{-y} int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx , dy, tag1$$
after a change of order has been made.
For the inner $x$-integral
begin{align}
int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx &= int_0^infty frac{e^{-2 pi x} sin (xy)}{1 - e^{-2 pi x}} , dx\
&= int_0^infty sum_{n = 0}^infty e^{-2 pi x} sin (xy) cdot e^{-2pi n x} , dx\
&= sum_{n = 1}^infty int_0^infty e^{-2pi n x} sin (xy) , dx,
end{align}
where a shift in the index of $n mapsto n - 1$ has been made. Now integrating by parts twice leads to
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = sum_{n = 1}^infty frac{y}{4 pi^2 n^2 + y^2} = frac{1}{2 pi} sum_{n = 1}^infty frac{frac{y}{2pi}}{left (frac{y}{2 pi} right )^2 + n^2}. tag2$$
Using the well-known result of
$$pi coth (pi z) = frac{1}{z} + 2 sum_{n = 1}^infty frac{z}{z^2 + n^2} , quad z neq 0,$$
the sum in (2) can be expressed as
$$int_0^infty frac{sin (xy)}{e^{2 pi x} - 1} , dx = frac{1}{4} coth left (frac{y}{2} right ) - frac{1}{2y}.$$
On returning to our integral in (1), we have
begin{align}
I &= -frac{1}{2} int_0^infty e^{-y} + frac{1}{4} int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy = -frac{1}{2} + frac{1}{4} J,
end{align}
where
$$J = int_0^infty y e^{-y} coth left (frac{y}{2} right ) , dy.$$
Finding $J$ we have
begin{align}
J &= int_0^infty y e^{-y} frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}} , dy\
&= int_0^infty y e^{-y} frac{1 + e^{-y}}{1 - e^{-y}} , dy\
&= int_0^infty y e^{-y} left (1 + frac{2 e^{-y}}{1 - e^{-y}} right ) , dy\
&= int_0^infty y e^{-y} , dy + 2 int_0^infty frac{y e^{-2y}}{1 - e^{-y}} , dy\
&= 1 + 2 sum_{n = 0}^infty int_0^infty y e^{-y(n + 2)} , dy\
&= 1 + 2 sum_{n = 0}^infty frac{1}{(n + 2)^2} qquad text{(by parts)}\
&= 1 + 2 sum_{n = 2}^infty frac{1}{n^2} \
&= 1 + 2 sum_{n = 1}^infty frac{1}{n^2} - 2\
&= -1 + 2 cdot frac{pi^2}{6}\
&= -1 + frac{pi^2}{3}.
end{align}
So finally we have
$$I = -frac{1}{2} + frac{1}{4} left (-1 + frac{pi^2}{3} right ),$$
or
$$int_0^infty frac{sin (2 tan^{-1} x)}{(1 + x^2) (e^{2 pi x} - 1)} , dx = frac{pi^2 - 9}{12},$$
as expected.
answered Jan 16 at 5:53


omegadotomegadot
5,9122728
5,9122728
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072149%2fexplicit-calculation-of-int-0-infty-frac-sin2-arctan-x1x2-exp2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have the value of the integral. What you're seeking is to confirm this answer.
$endgroup$
– David G. Stork
Jan 13 at 16:05
$begingroup$
Hint: $sin2theta=2sinthetacostheta=2tanthetacos^2theta=2tantheta/sec^2theta=2tantheta/(1+tan^2theta)$
$endgroup$
– Barry Cipra
Jan 13 at 16:13