How prove that: $left | a right |+left | b right |leq 5$ for $P(x)=x^{3}+ax^{2}+bx+1$?












2












$begingroup$


Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
    $endgroup$
    – AlexR
    Jul 23 '14 at 19:05








  • 1




    $begingroup$
    And $a$ and $b$ are real too?
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:09










  • $begingroup$
    $a+bleq 1$ and $a+b ge -3$ right?
    $endgroup$
    – piteer
    Jul 23 '14 at 19:10










  • $begingroup$
    We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
    $endgroup$
    – copper.hat
    Jul 23 '14 at 19:14








  • 3




    $begingroup$
    First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:14
















2












$begingroup$


Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
    $endgroup$
    – AlexR
    Jul 23 '14 at 19:05








  • 1




    $begingroup$
    And $a$ and $b$ are real too?
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:09










  • $begingroup$
    $a+bleq 1$ and $a+b ge -3$ right?
    $endgroup$
    – piteer
    Jul 23 '14 at 19:10










  • $begingroup$
    We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
    $endgroup$
    – copper.hat
    Jul 23 '14 at 19:14








  • 3




    $begingroup$
    First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:14














2












2








2





$begingroup$


Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?










share|cite|improve this question











$endgroup$




Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?







polynomials






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 14 at 18:25







piteer

















asked Jul 23 '14 at 19:01









piteerpiteer

2,917619




2,917619












  • $begingroup$
    You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
    $endgroup$
    – AlexR
    Jul 23 '14 at 19:05








  • 1




    $begingroup$
    And $a$ and $b$ are real too?
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:09










  • $begingroup$
    $a+bleq 1$ and $a+b ge -3$ right?
    $endgroup$
    – piteer
    Jul 23 '14 at 19:10










  • $begingroup$
    We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
    $endgroup$
    – copper.hat
    Jul 23 '14 at 19:14








  • 3




    $begingroup$
    First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:14


















  • $begingroup$
    You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
    $endgroup$
    – AlexR
    Jul 23 '14 at 19:05








  • 1




    $begingroup$
    And $a$ and $b$ are real too?
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:09










  • $begingroup$
    $a+bleq 1$ and $a+b ge -3$ right?
    $endgroup$
    – piteer
    Jul 23 '14 at 19:10










  • $begingroup$
    We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
    $endgroup$
    – copper.hat
    Jul 23 '14 at 19:14








  • 3




    $begingroup$
    First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
    $endgroup$
    – Daniel Fischer
    Jul 23 '14 at 19:14
















$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05






$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05






1




1




$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer
Jul 23 '14 at 19:09




$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer
Jul 23 '14 at 19:09












$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10




$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10












$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14






$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14






3




3




$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer
Jul 23 '14 at 19:14




$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer
Jul 23 '14 at 19:14










2 Answers
2






active

oldest

votes


















2












$begingroup$

We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.

Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.

Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.

Also:
$-1leq b-a leq 1$.

Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.

Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The comments above show that $a=-1, b=0$.
    $endgroup$
    – copper.hat
    Jul 23 '14 at 19:33



















1












$begingroup$

Using the two inequalities
$$begin{align*}
x^3 + ax^2 + bx & le 0 & forall |x|le 1\
x^3 + ax^2 + bx & ge -2 & forall |x|le 1
end{align*}$$
We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
$$x^2 + ax + b le 0 quadforall |x|le 1$$
Can you calculate
$$M = max_{|x|le 1} x^2+ax+b$$
As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f876200%2fhow-prove-that-left-a-right-left-b-right-leq-5-for-px-x3ax%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.

    Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.

    Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.

    Also:
    $-1leq b-a leq 1$.

    Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.

    Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      The comments above show that $a=-1, b=0$.
      $endgroup$
      – copper.hat
      Jul 23 '14 at 19:33
















    2












    $begingroup$

    We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.

    Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.

    Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.

    Also:
    $-1leq b-a leq 1$.

    Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.

    Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      The comments above show that $a=-1, b=0$.
      $endgroup$
      – copper.hat
      Jul 23 '14 at 19:33














    2












    2








    2





    $begingroup$

    We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.

    Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.

    Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.

    Also:
    $-1leq b-a leq 1$.

    Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.

    Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.






    share|cite|improve this answer











    $endgroup$



    We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.

    Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.

    Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.

    Also:
    $-1leq b-a leq 1$.

    Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.

    Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jul 23 '14 at 19:40









    AlexR

    22.7k12349




    22.7k12349










    answered Jul 23 '14 at 19:32









    DeepSeaDeepSea

    71.3k54487




    71.3k54487












    • $begingroup$
      The comments above show that $a=-1, b=0$.
      $endgroup$
      – copper.hat
      Jul 23 '14 at 19:33


















    • $begingroup$
      The comments above show that $a=-1, b=0$.
      $endgroup$
      – copper.hat
      Jul 23 '14 at 19:33
















    $begingroup$
    The comments above show that $a=-1, b=0$.
    $endgroup$
    – copper.hat
    Jul 23 '14 at 19:33




    $begingroup$
    The comments above show that $a=-1, b=0$.
    $endgroup$
    – copper.hat
    Jul 23 '14 at 19:33











    1












    $begingroup$

    Using the two inequalities
    $$begin{align*}
    x^3 + ax^2 + bx & le 0 & forall |x|le 1\
    x^3 + ax^2 + bx & ge -2 & forall |x|le 1
    end{align*}$$
    We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
    $$x^2 + ax + b le 0 quadforall |x|le 1$$
    Can you calculate
    $$M = max_{|x|le 1} x^2+ax+b$$
    As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Using the two inequalities
      $$begin{align*}
      x^3 + ax^2 + bx & le 0 & forall |x|le 1\
      x^3 + ax^2 + bx & ge -2 & forall |x|le 1
      end{align*}$$
      We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
      $$x^2 + ax + b le 0 quadforall |x|le 1$$
      Can you calculate
      $$M = max_{|x|le 1} x^2+ax+b$$
      As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Using the two inequalities
        $$begin{align*}
        x^3 + ax^2 + bx & le 0 & forall |x|le 1\
        x^3 + ax^2 + bx & ge -2 & forall |x|le 1
        end{align*}$$
        We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
        $$x^2 + ax + b le 0 quadforall |x|le 1$$
        Can you calculate
        $$M = max_{|x|le 1} x^2+ax+b$$
        As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.






        share|cite|improve this answer









        $endgroup$



        Using the two inequalities
        $$begin{align*}
        x^3 + ax^2 + bx & le 0 & forall |x|le 1\
        x^3 + ax^2 + bx & ge -2 & forall |x|le 1
        end{align*}$$
        We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
        $$x^2 + ax + b le 0 quadforall |x|le 1$$
        Can you calculate
        $$M = max_{|x|le 1} x^2+ax+b$$
        As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jul 23 '14 at 19:09









        AlexRAlexR

        22.7k12349




        22.7k12349






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f876200%2fhow-prove-that-left-a-right-left-b-right-leq-5-for-px-x3ax%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            Npm cannot find a required file even through it is in the searched directory