How prove that: $left | a right |+left | b right |leq 5$ for $P(x)=x^{3}+ax^{2}+bx+1$?
$begingroup$
Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?
polynomials
$endgroup$
|
show 2 more comments
$begingroup$
Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?
polynomials
$endgroup$
$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05
1
$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:09
$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10
$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14
3
$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:14
|
show 2 more comments
$begingroup$
Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?
polynomials
$endgroup$
Let $P(x)=x^{3}+ax^{2}+bx+1$ and $left | P(x) right |leq 1$ for all x such that $left | x right |leq 1$. How prove that: $left | a right |+left | b right |leq 5$?
polynomials
polynomials
edited Feb 14 at 18:25
piteer
asked Jul 23 '14 at 19:01
piteerpiteer
2,917619
2,917619
$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05
1
$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:09
$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10
$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14
3
$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:14
|
show 2 more comments
$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05
1
$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:09
$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10
$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14
3
$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:14
$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05
$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05
1
1
$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:09
$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:09
$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10
$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10
$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14
$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14
3
3
$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:14
$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:14
|
show 2 more comments
2 Answers
2
active
oldest
votes
$begingroup$
We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.
Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.
Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.
Also:
$-1leq b-a leq 1$.
Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.
Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.
$endgroup$
$begingroup$
The comments above show that $a=-1, b=0$.
$endgroup$
– copper.hat
Jul 23 '14 at 19:33
add a comment |
$begingroup$
Using the two inequalities
$$begin{align*}
x^3 + ax^2 + bx & le 0 & forall |x|le 1\
x^3 + ax^2 + bx & ge -2 & forall |x|le 1
end{align*}$$
We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
$$x^2 + ax + b le 0 quadforall |x|le 1$$
Can you calculate
$$M = max_{|x|le 1} x^2+ax+b$$
As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f876200%2fhow-prove-that-left-a-right-left-b-right-leq-5-for-px-x3ax%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.
Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.
Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.
Also:
$-1leq b-a leq 1$.
Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.
Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.
$endgroup$
$begingroup$
The comments above show that $a=-1, b=0$.
$endgroup$
– copper.hat
Jul 23 '14 at 19:33
add a comment |
$begingroup$
We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.
Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.
Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.
Also:
$-1leq b-a leq 1$.
Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.
Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.
$endgroup$
$begingroup$
The comments above show that $a=-1, b=0$.
$endgroup$
– copper.hat
Jul 23 '14 at 19:33
add a comment |
$begingroup$
We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.
Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.
Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.
Also:
$-1leq b-a leq 1$.
Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.
Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.
$endgroup$
We have: $|P(1)| leq 1 to |1+a+b+1| leq 1 to -1 leq a+b+2 leq 1 to -3 leq a+b leq -1$.
Also $|P(-1)| leq 1 to |-1+a-b+1| leq 1 to -1 leq a-b leq 1$.
Add two inequalities we have: $-4 leq 2a leq 0 to -2 leq a leq 0 to |a| leq 2$.
Also:
$-1leq b-a leq 1$.
Add this and the first inequality we have: $-4 leq 2b leq 0 to -2 leq b leq 0 to |b| leq 2$.
Thus: $|a| + |b| leq 2 + 2 = 4 < 5$.
edited Jul 23 '14 at 19:40
AlexR
22.7k12349
22.7k12349
answered Jul 23 '14 at 19:32


DeepSeaDeepSea
71.3k54487
71.3k54487
$begingroup$
The comments above show that $a=-1, b=0$.
$endgroup$
– copper.hat
Jul 23 '14 at 19:33
add a comment |
$begingroup$
The comments above show that $a=-1, b=0$.
$endgroup$
– copper.hat
Jul 23 '14 at 19:33
$begingroup$
The comments above show that $a=-1, b=0$.
$endgroup$
– copper.hat
Jul 23 '14 at 19:33
$begingroup$
The comments above show that $a=-1, b=0$.
$endgroup$
– copper.hat
Jul 23 '14 at 19:33
add a comment |
$begingroup$
Using the two inequalities
$$begin{align*}
x^3 + ax^2 + bx & le 0 & forall |x|le 1\
x^3 + ax^2 + bx & ge -2 & forall |x|le 1
end{align*}$$
We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
$$x^2 + ax + b le 0 quadforall |x|le 1$$
Can you calculate
$$M = max_{|x|le 1} x^2+ax+b$$
As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.
$endgroup$
add a comment |
$begingroup$
Using the two inequalities
$$begin{align*}
x^3 + ax^2 + bx & le 0 & forall |x|le 1\
x^3 + ax^2 + bx & ge -2 & forall |x|le 1
end{align*}$$
We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
$$x^2 + ax + b le 0 quadforall |x|le 1$$
Can you calculate
$$M = max_{|x|le 1} x^2+ax+b$$
As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.
$endgroup$
add a comment |
$begingroup$
Using the two inequalities
$$begin{align*}
x^3 + ax^2 + bx & le 0 & forall |x|le 1\
x^3 + ax^2 + bx & ge -2 & forall |x|le 1
end{align*}$$
We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
$$x^2 + ax + b le 0 quadforall |x|le 1$$
Can you calculate
$$M = max_{|x|le 1} x^2+ax+b$$
As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.
$endgroup$
Using the two inequalities
$$begin{align*}
x^3 + ax^2 + bx & le 0 & forall |x|le 1\
x^3 + ax^2 + bx & ge -2 & forall |x|le 1
end{align*}$$
We can see that $x=0$ imposes no condition on $a,b$, so we may assume $xne 0$ to obtain
$$x^2 + ax + b le 0 quadforall |x|le 1$$
Can you calculate
$$M = max_{|x|le 1} x^2+ax+b$$
As a function of $a,b$? You will then find $M(a,b)le 0$ as the first restriction. Similar thoughts will give you another bound from the second inequality.
answered Jul 23 '14 at 19:09
AlexRAlexR
22.7k12349
22.7k12349
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f876200%2fhow-prove-that-left-a-right-left-b-right-leq-5-for-px-x3ax%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have two inequalities: $x^3 + ax^2 + bx le 0 quadforall |x|le 1$ and $x^3 + ax^2 + bx ge -2 quadforall |x|le 1$
$endgroup$
– AlexR
Jul 23 '14 at 19:05
1
$begingroup$
And $a$ and $b$ are real too?
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:09
$begingroup$
$a+bleq 1$ and $a+b ge -3$ right?
$endgroup$
– piteer
Jul 23 '14 at 19:10
$begingroup$
We have $P(0) = 1$ and $P'(0) = b$. Since we have $|P(x)|le 1$ and $0 in [-1,1]^circ$, doesn't this imply that $b=0$?
$endgroup$
– copper.hat
Jul 23 '14 at 19:14
3
$begingroup$
First, $P(0) = 1$ and $b = P'(0)$ implies $b = 0$. $P''(0) = 2a$ implies $a leqslant 0$. $P(1) = 2+a leqslant 1$ implies $a leqslant -1$, and $P(-1) = a geqslant -1$ implies $a geqslant -1$.
$endgroup$
– Daniel Fischer♦
Jul 23 '14 at 19:14