How to integrate $int frac{1}{1+tan^{2019}x}dx$












2












$begingroup$


How to integrate $$int^{2018} _{0} frac{1}{1+tan^{2019}x}dx$$



I came across this question early this morning.
I tried substituting $t=tan x$. But nothing really came to be easy.



Is there an antiderivative ? or not ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Notice that this is an improper integral and the first question is whether it even converges.
    $endgroup$
    – Cheerful Parsnip
    Jan 13 at 16:25






  • 1




    $begingroup$
    Is it an olympiad or contest problem?
    $endgroup$
    – Parcly Taxel
    Jan 13 at 16:26










  • $begingroup$
    There is no antiderivative. Are you sure that the upper limit isn't a multiple of $pi/2$ (e.g., $2018pi$)?
    $endgroup$
    – Mark Viola
    Jan 13 at 16:31












  • $begingroup$
    @MarkViola Im not sure . But if it was $pi/2$ or something like that , can I use $f(x) , f(a-x)$ method ?
    $endgroup$
    – Angelo Mark
    Jan 13 at 16:34






  • 2




    $begingroup$
    @mathcounterexamples.net $$begin{align} int_0^{pi/2}frac1{1+tan^a(x)},dx&overbrace{=}^{xmapstopi/2-x}int_0^{pi/2}frac{1}{1+tan^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{1}{1+cot^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{tan^a(x)}{1+tan^a(x)},dx\\ &pi/2-int_0^{pi/2}frac{1}{1+tan^a(x)},dx end{align}$$Can you see the light? ;-))
    $endgroup$
    – Mark Viola
    Jan 13 at 19:57


















2












$begingroup$


How to integrate $$int^{2018} _{0} frac{1}{1+tan^{2019}x}dx$$



I came across this question early this morning.
I tried substituting $t=tan x$. But nothing really came to be easy.



Is there an antiderivative ? or not ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Notice that this is an improper integral and the first question is whether it even converges.
    $endgroup$
    – Cheerful Parsnip
    Jan 13 at 16:25






  • 1




    $begingroup$
    Is it an olympiad or contest problem?
    $endgroup$
    – Parcly Taxel
    Jan 13 at 16:26










  • $begingroup$
    There is no antiderivative. Are you sure that the upper limit isn't a multiple of $pi/2$ (e.g., $2018pi$)?
    $endgroup$
    – Mark Viola
    Jan 13 at 16:31












  • $begingroup$
    @MarkViola Im not sure . But if it was $pi/2$ or something like that , can I use $f(x) , f(a-x)$ method ?
    $endgroup$
    – Angelo Mark
    Jan 13 at 16:34






  • 2




    $begingroup$
    @mathcounterexamples.net $$begin{align} int_0^{pi/2}frac1{1+tan^a(x)},dx&overbrace{=}^{xmapstopi/2-x}int_0^{pi/2}frac{1}{1+tan^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{1}{1+cot^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{tan^a(x)}{1+tan^a(x)},dx\\ &pi/2-int_0^{pi/2}frac{1}{1+tan^a(x)},dx end{align}$$Can you see the light? ;-))
    $endgroup$
    – Mark Viola
    Jan 13 at 19:57
















2












2








2


2



$begingroup$


How to integrate $$int^{2018} _{0} frac{1}{1+tan^{2019}x}dx$$



I came across this question early this morning.
I tried substituting $t=tan x$. But nothing really came to be easy.



Is there an antiderivative ? or not ?










share|cite|improve this question











$endgroup$




How to integrate $$int^{2018} _{0} frac{1}{1+tan^{2019}x}dx$$



I came across this question early this morning.
I tried substituting $t=tan x$. But nothing really came to be easy.



Is there an antiderivative ? or not ?







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 16:22







Angelo Mark

















asked Jan 13 at 16:15









Angelo MarkAngelo Mark

4,03721641




4,03721641












  • $begingroup$
    Notice that this is an improper integral and the first question is whether it even converges.
    $endgroup$
    – Cheerful Parsnip
    Jan 13 at 16:25






  • 1




    $begingroup$
    Is it an olympiad or contest problem?
    $endgroup$
    – Parcly Taxel
    Jan 13 at 16:26










  • $begingroup$
    There is no antiderivative. Are you sure that the upper limit isn't a multiple of $pi/2$ (e.g., $2018pi$)?
    $endgroup$
    – Mark Viola
    Jan 13 at 16:31












  • $begingroup$
    @MarkViola Im not sure . But if it was $pi/2$ or something like that , can I use $f(x) , f(a-x)$ method ?
    $endgroup$
    – Angelo Mark
    Jan 13 at 16:34






  • 2




    $begingroup$
    @mathcounterexamples.net $$begin{align} int_0^{pi/2}frac1{1+tan^a(x)},dx&overbrace{=}^{xmapstopi/2-x}int_0^{pi/2}frac{1}{1+tan^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{1}{1+cot^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{tan^a(x)}{1+tan^a(x)},dx\\ &pi/2-int_0^{pi/2}frac{1}{1+tan^a(x)},dx end{align}$$Can you see the light? ;-))
    $endgroup$
    – Mark Viola
    Jan 13 at 19:57




















  • $begingroup$
    Notice that this is an improper integral and the first question is whether it even converges.
    $endgroup$
    – Cheerful Parsnip
    Jan 13 at 16:25






  • 1




    $begingroup$
    Is it an olympiad or contest problem?
    $endgroup$
    – Parcly Taxel
    Jan 13 at 16:26










  • $begingroup$
    There is no antiderivative. Are you sure that the upper limit isn't a multiple of $pi/2$ (e.g., $2018pi$)?
    $endgroup$
    – Mark Viola
    Jan 13 at 16:31












  • $begingroup$
    @MarkViola Im not sure . But if it was $pi/2$ or something like that , can I use $f(x) , f(a-x)$ method ?
    $endgroup$
    – Angelo Mark
    Jan 13 at 16:34






  • 2




    $begingroup$
    @mathcounterexamples.net $$begin{align} int_0^{pi/2}frac1{1+tan^a(x)},dx&overbrace{=}^{xmapstopi/2-x}int_0^{pi/2}frac{1}{1+tan^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{1}{1+cot^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{tan^a(x)}{1+tan^a(x)},dx\\ &pi/2-int_0^{pi/2}frac{1}{1+tan^a(x)},dx end{align}$$Can you see the light? ;-))
    $endgroup$
    – Mark Viola
    Jan 13 at 19:57


















$begingroup$
Notice that this is an improper integral and the first question is whether it even converges.
$endgroup$
– Cheerful Parsnip
Jan 13 at 16:25




$begingroup$
Notice that this is an improper integral and the first question is whether it even converges.
$endgroup$
– Cheerful Parsnip
Jan 13 at 16:25




1




1




$begingroup$
Is it an olympiad or contest problem?
$endgroup$
– Parcly Taxel
Jan 13 at 16:26




$begingroup$
Is it an olympiad or contest problem?
$endgroup$
– Parcly Taxel
Jan 13 at 16:26












$begingroup$
There is no antiderivative. Are you sure that the upper limit isn't a multiple of $pi/2$ (e.g., $2018pi$)?
$endgroup$
– Mark Viola
Jan 13 at 16:31






$begingroup$
There is no antiderivative. Are you sure that the upper limit isn't a multiple of $pi/2$ (e.g., $2018pi$)?
$endgroup$
– Mark Viola
Jan 13 at 16:31














$begingroup$
@MarkViola Im not sure . But if it was $pi/2$ or something like that , can I use $f(x) , f(a-x)$ method ?
$endgroup$
– Angelo Mark
Jan 13 at 16:34




$begingroup$
@MarkViola Im not sure . But if it was $pi/2$ or something like that , can I use $f(x) , f(a-x)$ method ?
$endgroup$
– Angelo Mark
Jan 13 at 16:34




2




2




$begingroup$
@mathcounterexamples.net $$begin{align} int_0^{pi/2}frac1{1+tan^a(x)},dx&overbrace{=}^{xmapstopi/2-x}int_0^{pi/2}frac{1}{1+tan^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{1}{1+cot^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{tan^a(x)}{1+tan^a(x)},dx\\ &pi/2-int_0^{pi/2}frac{1}{1+tan^a(x)},dx end{align}$$Can you see the light? ;-))
$endgroup$
– Mark Viola
Jan 13 at 19:57






$begingroup$
@mathcounterexamples.net $$begin{align} int_0^{pi/2}frac1{1+tan^a(x)},dx&overbrace{=}^{xmapstopi/2-x}int_0^{pi/2}frac{1}{1+tan^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{1}{1+cot^a(pi/2-x)},dx\\ &=int_0^{pi/2}frac{tan^a(x)}{1+tan^a(x)},dx\\ &pi/2-int_0^{pi/2}frac{1}{1+tan^a(x)},dx end{align}$$Can you see the light? ;-))
$endgroup$
– Mark Viola
Jan 13 at 19:57












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072174%2fhow-to-integrate-int-frac11-tan2019xdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072174%2fhow-to-integrate-int-frac11-tan2019xdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

Npm cannot find a required file even through it is in the searched directory