Show that $ a,b,c, sqrt{a}+ sqrt{b}+sqrt{c} inmathbb Q implies sqrt{a},sqrt{b},sqrt{c} inmathbb Q $
$begingroup$
Assume that $a,b,c, sqrt{a}+ sqrt{b}+sqrt{c} inmathbb Q$ are rational,prove $sqrt{a},sqrt{b},sqrt{c} inmathbb Q$,are rational.
I know that can be proved, would like to know that there is no easier way
$sqrt a + sqrt b + sqrt c = p in mathbb Q$,
$sqrt a + sqrt b = p- sqrt c$,
$a+b+2sqrt a sqrt b = p^2+c-2psqrt c$,
$2sqrt asqrt b=p^2+c-a-b-2psqrt c$,
$4ab=(p^2+c-a-b)+4p^2c-4p(p^2+c-a-b)sqrt c$,
$sqrt c=frac{(p^2+c-a-b)+4p^c-4ab}{4p(p^2+c-a-b)}inmathbb Q$.
number-theory
$endgroup$
add a comment |
$begingroup$
Assume that $a,b,c, sqrt{a}+ sqrt{b}+sqrt{c} inmathbb Q$ are rational,prove $sqrt{a},sqrt{b},sqrt{c} inmathbb Q$,are rational.
I know that can be proved, would like to know that there is no easier way
$sqrt a + sqrt b + sqrt c = p in mathbb Q$,
$sqrt a + sqrt b = p- sqrt c$,
$a+b+2sqrt a sqrt b = p^2+c-2psqrt c$,
$2sqrt asqrt b=p^2+c-a-b-2psqrt c$,
$4ab=(p^2+c-a-b)+4p^2c-4p(p^2+c-a-b)sqrt c$,
$sqrt c=frac{(p^2+c-a-b)+4p^c-4ab}{4p(p^2+c-a-b)}inmathbb Q$.
number-theory
$endgroup$
$begingroup$
Looks good, the only thing that needs to be done is to mqke sure we are not dividing by $0$.
$endgroup$
– André Nicolas
Apr 25 '12 at 1:29
1
$begingroup$
Exactly; how do you know $p^2+c-a-bne0$? Also, the line that starts $4ab=$ should have $(p^2+c-a-b)^2$ in it.
$endgroup$
– Gerry Myerson
Apr 25 '12 at 1:42
add a comment |
$begingroup$
Assume that $a,b,c, sqrt{a}+ sqrt{b}+sqrt{c} inmathbb Q$ are rational,prove $sqrt{a},sqrt{b},sqrt{c} inmathbb Q$,are rational.
I know that can be proved, would like to know that there is no easier way
$sqrt a + sqrt b + sqrt c = p in mathbb Q$,
$sqrt a + sqrt b = p- sqrt c$,
$a+b+2sqrt a sqrt b = p^2+c-2psqrt c$,
$2sqrt asqrt b=p^2+c-a-b-2psqrt c$,
$4ab=(p^2+c-a-b)+4p^2c-4p(p^2+c-a-b)sqrt c$,
$sqrt c=frac{(p^2+c-a-b)+4p^c-4ab}{4p(p^2+c-a-b)}inmathbb Q$.
number-theory
$endgroup$
Assume that $a,b,c, sqrt{a}+ sqrt{b}+sqrt{c} inmathbb Q$ are rational,prove $sqrt{a},sqrt{b},sqrt{c} inmathbb Q$,are rational.
I know that can be proved, would like to know that there is no easier way
$sqrt a + sqrt b + sqrt c = p in mathbb Q$,
$sqrt a + sqrt b = p- sqrt c$,
$a+b+2sqrt a sqrt b = p^2+c-2psqrt c$,
$2sqrt asqrt b=p^2+c-a-b-2psqrt c$,
$4ab=(p^2+c-a-b)+4p^2c-4p(p^2+c-a-b)sqrt c$,
$sqrt c=frac{(p^2+c-a-b)+4p^c-4ab}{4p(p^2+c-a-b)}inmathbb Q$.
number-theory
number-theory
edited Apr 25 '12 at 19:15


Martin Sleziak
44.7k10118272
44.7k10118272
asked Apr 25 '12 at 1:15
tianzhidaosunyouyutianzhidaosunyouyu
86621118
86621118
$begingroup$
Looks good, the only thing that needs to be done is to mqke sure we are not dividing by $0$.
$endgroup$
– André Nicolas
Apr 25 '12 at 1:29
1
$begingroup$
Exactly; how do you know $p^2+c-a-bne0$? Also, the line that starts $4ab=$ should have $(p^2+c-a-b)^2$ in it.
$endgroup$
– Gerry Myerson
Apr 25 '12 at 1:42
add a comment |
$begingroup$
Looks good, the only thing that needs to be done is to mqke sure we are not dividing by $0$.
$endgroup$
– André Nicolas
Apr 25 '12 at 1:29
1
$begingroup$
Exactly; how do you know $p^2+c-a-bne0$? Also, the line that starts $4ab=$ should have $(p^2+c-a-b)^2$ in it.
$endgroup$
– Gerry Myerson
Apr 25 '12 at 1:42
$begingroup$
Looks good, the only thing that needs to be done is to mqke sure we are not dividing by $0$.
$endgroup$
– André Nicolas
Apr 25 '12 at 1:29
$begingroup$
Looks good, the only thing that needs to be done is to mqke sure we are not dividing by $0$.
$endgroup$
– André Nicolas
Apr 25 '12 at 1:29
1
1
$begingroup$
Exactly; how do you know $p^2+c-a-bne0$? Also, the line that starts $4ab=$ should have $(p^2+c-a-b)^2$ in it.
$endgroup$
– Gerry Myerson
Apr 25 '12 at 1:42
$begingroup$
Exactly; how do you know $p^2+c-a-bne0$? Also, the line that starts $4ab=$ should have $(p^2+c-a-b)^2$ in it.
$endgroup$
– Gerry Myerson
Apr 25 '12 at 1:42
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
As you surmised, induction works, employing our prior Lemma (case $rm:n = 2:!).:$ Put $rm:K = mathbb Q:$ in
Theorem $rm sqrt{c_1}+cdots+!sqrt{c_{n}} = kin K Rightarrow sqrt{c_i}in K:$ for all $rm i,:$ if $rm: 0 < c_iin K:$ an ordered field.
Proof $: $ By induction on $rm n.$ Clear if $rm:n=1.$ It is true for $rm:n=2:$ by said Lemma. Suppose that $rm: n>2.$ It suffices to show one of the square-roots is in $rm K,:$ since then the sum of all of the others is in $rm K,:$ so, by induction, all of the others are in $rm K$.
Note that $rm:sqrt{c_1}+cdots+sqrt{c_{n-1}}: =: k! -! sqrt{c_n}in K(sqrt{c_n}):$ so all $,rmsqrt{c_i}in K(sqrt{c_n}):$ by induction.
Therefore $rm sqrt{c_i} =: a_i + b_isqrt{c_n}:$ for some $rm:a_i,:!b_iin K,:$ for $rm:i=1,ldots,n!-!1$.
Some $rm: b_i < 0:$ $Rightarrow$ $rm: a_i = sqrt{c_i}-b_isqrt{c_n} = sqrt{c_i}+!sqrt{b_i^2 c_n}in K:Rightarrow sqrt{c_i}in K:$ by Lemma $rm(n=2).$
Else all $rm b_i ge 0.:$ Let $rm: b = b_1!+cdots+b_{n-1} ge 0,:$ and let $rm: a = a_1!+cdots+a_{n-1}.:$ Then
$$rm sqrt{c_1}+cdots+!sqrt{c_{n}}: =: a+(b!+!1):sqrt{c_n} = kin K:Rightarrow:!sqrt{c_n}= (k!-!a)/(b!+!1)in K$$
Note $rm:bge0:Rightarrow b!+!1ne 0.:$ Hence, in either case, one of the square-roots is in $rm K. $ QED
Remark $ $ Note that the proof depends crucially on the positivity of the square-root summands. Without such the proof fails, e.g. $:sqrt{2} + (-sqrt{2})in mathbb Q:$ but $rm:sqrt{2}notinmathbb Q.:$ It is instructive to examine all of the spots where positivity is used in the proof (above and Lemma), e.g. to avoid dividing by $,0$.
See also this post on linear independence of square-roots (Besicovic's theorem).
$endgroup$
$begingroup$
The current solution, I do not quite understand. I would like to see your simple proof of, thank you
$endgroup$
– tianzhidaosunyouyu
Apr 26 '12 at 11:52
$begingroup$
@pxc417 I added further details - see above.
$endgroup$
– Bill Dubuque
Apr 26 '12 at 23:31
add a comment |
$begingroup$
Maybe not easier, but quite elegant :
Suppose that $a,b,c$ are all non zero. Let $K=mathbb{Q}(sqrt{a},sqrt{b},sqrt{c})$ and $n = [K: mathbb{Q}]$. Then since $Tr_{K/mathbb{Q}}(sqrt{a}) = Tr_{mathbb{Q}(sqrt{a})/mathbb{Q}} circ Tr_{K/mathbb{Q}(sqrt{a})} (sqrt{a})$, we have
$$ Tr_{K/mathbb{Q}}(sqrt{a}) = begin{cases} 0,& text{if } sqrt{a} notin mathbb{Q} \ nsqrt{a}, &text{if } sqrt{a} in mathbb{Q}, end{cases}$$
and same for $sqrt{b}$ and $sqrt{c}$.
By hypothesis $sqrt{a} + sqrt{b} +sqrt{c} in mathbb{Q}$, so
$$ Tr_{K/mathbb{Q}}(sqrt{a}) + Tr_{K/mathbb{Q}}(sqrt{b}) + Tr_{K/mathbb{Q}}(sqrt{c}) = nsqrt{a} + n sqrt{b} + n sqrt{c}.$$
It is easy to conclude that $sqrt{a},sqrt{b},sqrt{c} in mathbb{Q}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f136556%2fshow-that-a-b-c-sqrta-sqrtb-sqrtc-in-mathbb-q-implies-sqrta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you surmised, induction works, employing our prior Lemma (case $rm:n = 2:!).:$ Put $rm:K = mathbb Q:$ in
Theorem $rm sqrt{c_1}+cdots+!sqrt{c_{n}} = kin K Rightarrow sqrt{c_i}in K:$ for all $rm i,:$ if $rm: 0 < c_iin K:$ an ordered field.
Proof $: $ By induction on $rm n.$ Clear if $rm:n=1.$ It is true for $rm:n=2:$ by said Lemma. Suppose that $rm: n>2.$ It suffices to show one of the square-roots is in $rm K,:$ since then the sum of all of the others is in $rm K,:$ so, by induction, all of the others are in $rm K$.
Note that $rm:sqrt{c_1}+cdots+sqrt{c_{n-1}}: =: k! -! sqrt{c_n}in K(sqrt{c_n}):$ so all $,rmsqrt{c_i}in K(sqrt{c_n}):$ by induction.
Therefore $rm sqrt{c_i} =: a_i + b_isqrt{c_n}:$ for some $rm:a_i,:!b_iin K,:$ for $rm:i=1,ldots,n!-!1$.
Some $rm: b_i < 0:$ $Rightarrow$ $rm: a_i = sqrt{c_i}-b_isqrt{c_n} = sqrt{c_i}+!sqrt{b_i^2 c_n}in K:Rightarrow sqrt{c_i}in K:$ by Lemma $rm(n=2).$
Else all $rm b_i ge 0.:$ Let $rm: b = b_1!+cdots+b_{n-1} ge 0,:$ and let $rm: a = a_1!+cdots+a_{n-1}.:$ Then
$$rm sqrt{c_1}+cdots+!sqrt{c_{n}}: =: a+(b!+!1):sqrt{c_n} = kin K:Rightarrow:!sqrt{c_n}= (k!-!a)/(b!+!1)in K$$
Note $rm:bge0:Rightarrow b!+!1ne 0.:$ Hence, in either case, one of the square-roots is in $rm K. $ QED
Remark $ $ Note that the proof depends crucially on the positivity of the square-root summands. Without such the proof fails, e.g. $:sqrt{2} + (-sqrt{2})in mathbb Q:$ but $rm:sqrt{2}notinmathbb Q.:$ It is instructive to examine all of the spots where positivity is used in the proof (above and Lemma), e.g. to avoid dividing by $,0$.
See also this post on linear independence of square-roots (Besicovic's theorem).
$endgroup$
$begingroup$
The current solution, I do not quite understand. I would like to see your simple proof of, thank you
$endgroup$
– tianzhidaosunyouyu
Apr 26 '12 at 11:52
$begingroup$
@pxc417 I added further details - see above.
$endgroup$
– Bill Dubuque
Apr 26 '12 at 23:31
add a comment |
$begingroup$
As you surmised, induction works, employing our prior Lemma (case $rm:n = 2:!).:$ Put $rm:K = mathbb Q:$ in
Theorem $rm sqrt{c_1}+cdots+!sqrt{c_{n}} = kin K Rightarrow sqrt{c_i}in K:$ for all $rm i,:$ if $rm: 0 < c_iin K:$ an ordered field.
Proof $: $ By induction on $rm n.$ Clear if $rm:n=1.$ It is true for $rm:n=2:$ by said Lemma. Suppose that $rm: n>2.$ It suffices to show one of the square-roots is in $rm K,:$ since then the sum of all of the others is in $rm K,:$ so, by induction, all of the others are in $rm K$.
Note that $rm:sqrt{c_1}+cdots+sqrt{c_{n-1}}: =: k! -! sqrt{c_n}in K(sqrt{c_n}):$ so all $,rmsqrt{c_i}in K(sqrt{c_n}):$ by induction.
Therefore $rm sqrt{c_i} =: a_i + b_isqrt{c_n}:$ for some $rm:a_i,:!b_iin K,:$ for $rm:i=1,ldots,n!-!1$.
Some $rm: b_i < 0:$ $Rightarrow$ $rm: a_i = sqrt{c_i}-b_isqrt{c_n} = sqrt{c_i}+!sqrt{b_i^2 c_n}in K:Rightarrow sqrt{c_i}in K:$ by Lemma $rm(n=2).$
Else all $rm b_i ge 0.:$ Let $rm: b = b_1!+cdots+b_{n-1} ge 0,:$ and let $rm: a = a_1!+cdots+a_{n-1}.:$ Then
$$rm sqrt{c_1}+cdots+!sqrt{c_{n}}: =: a+(b!+!1):sqrt{c_n} = kin K:Rightarrow:!sqrt{c_n}= (k!-!a)/(b!+!1)in K$$
Note $rm:bge0:Rightarrow b!+!1ne 0.:$ Hence, in either case, one of the square-roots is in $rm K. $ QED
Remark $ $ Note that the proof depends crucially on the positivity of the square-root summands. Without such the proof fails, e.g. $:sqrt{2} + (-sqrt{2})in mathbb Q:$ but $rm:sqrt{2}notinmathbb Q.:$ It is instructive to examine all of the spots where positivity is used in the proof (above and Lemma), e.g. to avoid dividing by $,0$.
See also this post on linear independence of square-roots (Besicovic's theorem).
$endgroup$
$begingroup$
The current solution, I do not quite understand. I would like to see your simple proof of, thank you
$endgroup$
– tianzhidaosunyouyu
Apr 26 '12 at 11:52
$begingroup$
@pxc417 I added further details - see above.
$endgroup$
– Bill Dubuque
Apr 26 '12 at 23:31
add a comment |
$begingroup$
As you surmised, induction works, employing our prior Lemma (case $rm:n = 2:!).:$ Put $rm:K = mathbb Q:$ in
Theorem $rm sqrt{c_1}+cdots+!sqrt{c_{n}} = kin K Rightarrow sqrt{c_i}in K:$ for all $rm i,:$ if $rm: 0 < c_iin K:$ an ordered field.
Proof $: $ By induction on $rm n.$ Clear if $rm:n=1.$ It is true for $rm:n=2:$ by said Lemma. Suppose that $rm: n>2.$ It suffices to show one of the square-roots is in $rm K,:$ since then the sum of all of the others is in $rm K,:$ so, by induction, all of the others are in $rm K$.
Note that $rm:sqrt{c_1}+cdots+sqrt{c_{n-1}}: =: k! -! sqrt{c_n}in K(sqrt{c_n}):$ so all $,rmsqrt{c_i}in K(sqrt{c_n}):$ by induction.
Therefore $rm sqrt{c_i} =: a_i + b_isqrt{c_n}:$ for some $rm:a_i,:!b_iin K,:$ for $rm:i=1,ldots,n!-!1$.
Some $rm: b_i < 0:$ $Rightarrow$ $rm: a_i = sqrt{c_i}-b_isqrt{c_n} = sqrt{c_i}+!sqrt{b_i^2 c_n}in K:Rightarrow sqrt{c_i}in K:$ by Lemma $rm(n=2).$
Else all $rm b_i ge 0.:$ Let $rm: b = b_1!+cdots+b_{n-1} ge 0,:$ and let $rm: a = a_1!+cdots+a_{n-1}.:$ Then
$$rm sqrt{c_1}+cdots+!sqrt{c_{n}}: =: a+(b!+!1):sqrt{c_n} = kin K:Rightarrow:!sqrt{c_n}= (k!-!a)/(b!+!1)in K$$
Note $rm:bge0:Rightarrow b!+!1ne 0.:$ Hence, in either case, one of the square-roots is in $rm K. $ QED
Remark $ $ Note that the proof depends crucially on the positivity of the square-root summands. Without such the proof fails, e.g. $:sqrt{2} + (-sqrt{2})in mathbb Q:$ but $rm:sqrt{2}notinmathbb Q.:$ It is instructive to examine all of the spots where positivity is used in the proof (above and Lemma), e.g. to avoid dividing by $,0$.
See also this post on linear independence of square-roots (Besicovic's theorem).
$endgroup$
As you surmised, induction works, employing our prior Lemma (case $rm:n = 2:!).:$ Put $rm:K = mathbb Q:$ in
Theorem $rm sqrt{c_1}+cdots+!sqrt{c_{n}} = kin K Rightarrow sqrt{c_i}in K:$ for all $rm i,:$ if $rm: 0 < c_iin K:$ an ordered field.
Proof $: $ By induction on $rm n.$ Clear if $rm:n=1.$ It is true for $rm:n=2:$ by said Lemma. Suppose that $rm: n>2.$ It suffices to show one of the square-roots is in $rm K,:$ since then the sum of all of the others is in $rm K,:$ so, by induction, all of the others are in $rm K$.
Note that $rm:sqrt{c_1}+cdots+sqrt{c_{n-1}}: =: k! -! sqrt{c_n}in K(sqrt{c_n}):$ so all $,rmsqrt{c_i}in K(sqrt{c_n}):$ by induction.
Therefore $rm sqrt{c_i} =: a_i + b_isqrt{c_n}:$ for some $rm:a_i,:!b_iin K,:$ for $rm:i=1,ldots,n!-!1$.
Some $rm: b_i < 0:$ $Rightarrow$ $rm: a_i = sqrt{c_i}-b_isqrt{c_n} = sqrt{c_i}+!sqrt{b_i^2 c_n}in K:Rightarrow sqrt{c_i}in K:$ by Lemma $rm(n=2).$
Else all $rm b_i ge 0.:$ Let $rm: b = b_1!+cdots+b_{n-1} ge 0,:$ and let $rm: a = a_1!+cdots+a_{n-1}.:$ Then
$$rm sqrt{c_1}+cdots+!sqrt{c_{n}}: =: a+(b!+!1):sqrt{c_n} = kin K:Rightarrow:!sqrt{c_n}= (k!-!a)/(b!+!1)in K$$
Note $rm:bge0:Rightarrow b!+!1ne 0.:$ Hence, in either case, one of the square-roots is in $rm K. $ QED
Remark $ $ Note that the proof depends crucially on the positivity of the square-root summands. Without such the proof fails, e.g. $:sqrt{2} + (-sqrt{2})in mathbb Q:$ but $rm:sqrt{2}notinmathbb Q.:$ It is instructive to examine all of the spots where positivity is used in the proof (above and Lemma), e.g. to avoid dividing by $,0$.
See also this post on linear independence of square-roots (Besicovic's theorem).
edited Jan 14 at 22:40
answered Apr 25 '12 at 6:00
Bill DubuqueBill Dubuque
211k29192645
211k29192645
$begingroup$
The current solution, I do not quite understand. I would like to see your simple proof of, thank you
$endgroup$
– tianzhidaosunyouyu
Apr 26 '12 at 11:52
$begingroup$
@pxc417 I added further details - see above.
$endgroup$
– Bill Dubuque
Apr 26 '12 at 23:31
add a comment |
$begingroup$
The current solution, I do not quite understand. I would like to see your simple proof of, thank you
$endgroup$
– tianzhidaosunyouyu
Apr 26 '12 at 11:52
$begingroup$
@pxc417 I added further details - see above.
$endgroup$
– Bill Dubuque
Apr 26 '12 at 23:31
$begingroup$
The current solution, I do not quite understand. I would like to see your simple proof of, thank you
$endgroup$
– tianzhidaosunyouyu
Apr 26 '12 at 11:52
$begingroup$
The current solution, I do not quite understand. I would like to see your simple proof of, thank you
$endgroup$
– tianzhidaosunyouyu
Apr 26 '12 at 11:52
$begingroup$
@pxc417 I added further details - see above.
$endgroup$
– Bill Dubuque
Apr 26 '12 at 23:31
$begingroup$
@pxc417 I added further details - see above.
$endgroup$
– Bill Dubuque
Apr 26 '12 at 23:31
add a comment |
$begingroup$
Maybe not easier, but quite elegant :
Suppose that $a,b,c$ are all non zero. Let $K=mathbb{Q}(sqrt{a},sqrt{b},sqrt{c})$ and $n = [K: mathbb{Q}]$. Then since $Tr_{K/mathbb{Q}}(sqrt{a}) = Tr_{mathbb{Q}(sqrt{a})/mathbb{Q}} circ Tr_{K/mathbb{Q}(sqrt{a})} (sqrt{a})$, we have
$$ Tr_{K/mathbb{Q}}(sqrt{a}) = begin{cases} 0,& text{if } sqrt{a} notin mathbb{Q} \ nsqrt{a}, &text{if } sqrt{a} in mathbb{Q}, end{cases}$$
and same for $sqrt{b}$ and $sqrt{c}$.
By hypothesis $sqrt{a} + sqrt{b} +sqrt{c} in mathbb{Q}$, so
$$ Tr_{K/mathbb{Q}}(sqrt{a}) + Tr_{K/mathbb{Q}}(sqrt{b}) + Tr_{K/mathbb{Q}}(sqrt{c}) = nsqrt{a} + n sqrt{b} + n sqrt{c}.$$
It is easy to conclude that $sqrt{a},sqrt{b},sqrt{c} in mathbb{Q}$.
$endgroup$
add a comment |
$begingroup$
Maybe not easier, but quite elegant :
Suppose that $a,b,c$ are all non zero. Let $K=mathbb{Q}(sqrt{a},sqrt{b},sqrt{c})$ and $n = [K: mathbb{Q}]$. Then since $Tr_{K/mathbb{Q}}(sqrt{a}) = Tr_{mathbb{Q}(sqrt{a})/mathbb{Q}} circ Tr_{K/mathbb{Q}(sqrt{a})} (sqrt{a})$, we have
$$ Tr_{K/mathbb{Q}}(sqrt{a}) = begin{cases} 0,& text{if } sqrt{a} notin mathbb{Q} \ nsqrt{a}, &text{if } sqrt{a} in mathbb{Q}, end{cases}$$
and same for $sqrt{b}$ and $sqrt{c}$.
By hypothesis $sqrt{a} + sqrt{b} +sqrt{c} in mathbb{Q}$, so
$$ Tr_{K/mathbb{Q}}(sqrt{a}) + Tr_{K/mathbb{Q}}(sqrt{b}) + Tr_{K/mathbb{Q}}(sqrt{c}) = nsqrt{a} + n sqrt{b} + n sqrt{c}.$$
It is easy to conclude that $sqrt{a},sqrt{b},sqrt{c} in mathbb{Q}$.
$endgroup$
add a comment |
$begingroup$
Maybe not easier, but quite elegant :
Suppose that $a,b,c$ are all non zero. Let $K=mathbb{Q}(sqrt{a},sqrt{b},sqrt{c})$ and $n = [K: mathbb{Q}]$. Then since $Tr_{K/mathbb{Q}}(sqrt{a}) = Tr_{mathbb{Q}(sqrt{a})/mathbb{Q}} circ Tr_{K/mathbb{Q}(sqrt{a})} (sqrt{a})$, we have
$$ Tr_{K/mathbb{Q}}(sqrt{a}) = begin{cases} 0,& text{if } sqrt{a} notin mathbb{Q} \ nsqrt{a}, &text{if } sqrt{a} in mathbb{Q}, end{cases}$$
and same for $sqrt{b}$ and $sqrt{c}$.
By hypothesis $sqrt{a} + sqrt{b} +sqrt{c} in mathbb{Q}$, so
$$ Tr_{K/mathbb{Q}}(sqrt{a}) + Tr_{K/mathbb{Q}}(sqrt{b}) + Tr_{K/mathbb{Q}}(sqrt{c}) = nsqrt{a} + n sqrt{b} + n sqrt{c}.$$
It is easy to conclude that $sqrt{a},sqrt{b},sqrt{c} in mathbb{Q}$.
$endgroup$
Maybe not easier, but quite elegant :
Suppose that $a,b,c$ are all non zero. Let $K=mathbb{Q}(sqrt{a},sqrt{b},sqrt{c})$ and $n = [K: mathbb{Q}]$. Then since $Tr_{K/mathbb{Q}}(sqrt{a}) = Tr_{mathbb{Q}(sqrt{a})/mathbb{Q}} circ Tr_{K/mathbb{Q}(sqrt{a})} (sqrt{a})$, we have
$$ Tr_{K/mathbb{Q}}(sqrt{a}) = begin{cases} 0,& text{if } sqrt{a} notin mathbb{Q} \ nsqrt{a}, &text{if } sqrt{a} in mathbb{Q}, end{cases}$$
and same for $sqrt{b}$ and $sqrt{c}$.
By hypothesis $sqrt{a} + sqrt{b} +sqrt{c} in mathbb{Q}$, so
$$ Tr_{K/mathbb{Q}}(sqrt{a}) + Tr_{K/mathbb{Q}}(sqrt{b}) + Tr_{K/mathbb{Q}}(sqrt{c}) = nsqrt{a} + n sqrt{b} + n sqrt{c}.$$
It is easy to conclude that $sqrt{a},sqrt{b},sqrt{c} in mathbb{Q}$.
answered Apr 26 '12 at 11:20
user10676user10676
6,29021737
6,29021737
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f136556%2fshow-that-a-b-c-sqrta-sqrtb-sqrtc-in-mathbb-q-implies-sqrta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Looks good, the only thing that needs to be done is to mqke sure we are not dividing by $0$.
$endgroup$
– André Nicolas
Apr 25 '12 at 1:29
1
$begingroup$
Exactly; how do you know $p^2+c-a-bne0$? Also, the line that starts $4ab=$ should have $(p^2+c-a-b)^2$ in it.
$endgroup$
– Gerry Myerson
Apr 25 '12 at 1:42