Showing an inequality of a complex exponential function
$begingroup$
If $T>2$ and exist $p$ such that $2(p-1)leq T<2p$ show that $int_{0}^{T}|e^{i npi t}|^2dxleq pint_{0}^{2}|e^{i n pi t}|^2dt.$
Hint: Use 2-periodicity of $e^{i npi t}$
I have this: $int_{0}^{T}|e^{i n pi t}|^2dtleq int_{0}^{2p} |e^{i n pi t}|^2dt=pint_{0}^{2}|e^{i npi sp}|^2ds$ with the change $s=t/p$
real-analysis
$endgroup$
add a comment |
$begingroup$
If $T>2$ and exist $p$ such that $2(p-1)leq T<2p$ show that $int_{0}^{T}|e^{i npi t}|^2dxleq pint_{0}^{2}|e^{i n pi t}|^2dt.$
Hint: Use 2-periodicity of $e^{i npi t}$
I have this: $int_{0}^{T}|e^{i n pi t}|^2dtleq int_{0}^{2p} |e^{i n pi t}|^2dt=pint_{0}^{2}|e^{i npi sp}|^2ds$ with the change $s=t/p$
real-analysis
$endgroup$
$begingroup$
Doesn't $int_0^2 e^{inpi t} , dt$ equal zero?
$endgroup$
– angryavian
Jan 15 at 19:04
$begingroup$
Sorry. Now, I fixed it.
$endgroup$
– eraldcoil
Jan 15 at 19:19
$begingroup$
This is just silly; $|e^{inpi t}|=1$.
$endgroup$
– David C. Ullrich
Jan 15 at 23:42
add a comment |
$begingroup$
If $T>2$ and exist $p$ such that $2(p-1)leq T<2p$ show that $int_{0}^{T}|e^{i npi t}|^2dxleq pint_{0}^{2}|e^{i n pi t}|^2dt.$
Hint: Use 2-periodicity of $e^{i npi t}$
I have this: $int_{0}^{T}|e^{i n pi t}|^2dtleq int_{0}^{2p} |e^{i n pi t}|^2dt=pint_{0}^{2}|e^{i npi sp}|^2ds$ with the change $s=t/p$
real-analysis
$endgroup$
If $T>2$ and exist $p$ such that $2(p-1)leq T<2p$ show that $int_{0}^{T}|e^{i npi t}|^2dxleq pint_{0}^{2}|e^{i n pi t}|^2dt.$
Hint: Use 2-periodicity of $e^{i npi t}$
I have this: $int_{0}^{T}|e^{i n pi t}|^2dtleq int_{0}^{2p} |e^{i n pi t}|^2dt=pint_{0}^{2}|e^{i npi sp}|^2ds$ with the change $s=t/p$
real-analysis
real-analysis
edited Jan 15 at 21:17
daw
24.5k1645
24.5k1645
asked Jan 15 at 18:54
eraldcoileraldcoil
395211
395211
$begingroup$
Doesn't $int_0^2 e^{inpi t} , dt$ equal zero?
$endgroup$
– angryavian
Jan 15 at 19:04
$begingroup$
Sorry. Now, I fixed it.
$endgroup$
– eraldcoil
Jan 15 at 19:19
$begingroup$
This is just silly; $|e^{inpi t}|=1$.
$endgroup$
– David C. Ullrich
Jan 15 at 23:42
add a comment |
$begingroup$
Doesn't $int_0^2 e^{inpi t} , dt$ equal zero?
$endgroup$
– angryavian
Jan 15 at 19:04
$begingroup$
Sorry. Now, I fixed it.
$endgroup$
– eraldcoil
Jan 15 at 19:19
$begingroup$
This is just silly; $|e^{inpi t}|=1$.
$endgroup$
– David C. Ullrich
Jan 15 at 23:42
$begingroup$
Doesn't $int_0^2 e^{inpi t} , dt$ equal zero?
$endgroup$
– angryavian
Jan 15 at 19:04
$begingroup$
Doesn't $int_0^2 e^{inpi t} , dt$ equal zero?
$endgroup$
– angryavian
Jan 15 at 19:04
$begingroup$
Sorry. Now, I fixed it.
$endgroup$
– eraldcoil
Jan 15 at 19:19
$begingroup$
Sorry. Now, I fixed it.
$endgroup$
– eraldcoil
Jan 15 at 19:19
$begingroup$
This is just silly; $|e^{inpi t}|=1$.
$endgroup$
– David C. Ullrich
Jan 15 at 23:42
$begingroup$
This is just silly; $|e^{inpi t}|=1$.
$endgroup$
– David C. Ullrich
Jan 15 at 23:42
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I have it!
$int_{0}^{2p} |e^{i npi it}|^2dt=int_{0}^{2} |e^{i npi it}|^2dt+cdots+ int_{2(p-1)}^{2p} |e^{i npi it}|^2dt=pint_{0}^{2p} |e^{i npi it}|^2dt$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074790%2fshowing-an-inequality-of-a-complex-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I have it!
$int_{0}^{2p} |e^{i npi it}|^2dt=int_{0}^{2} |e^{i npi it}|^2dt+cdots+ int_{2(p-1)}^{2p} |e^{i npi it}|^2dt=pint_{0}^{2p} |e^{i npi it}|^2dt$
$endgroup$
add a comment |
$begingroup$
I have it!
$int_{0}^{2p} |e^{i npi it}|^2dt=int_{0}^{2} |e^{i npi it}|^2dt+cdots+ int_{2(p-1)}^{2p} |e^{i npi it}|^2dt=pint_{0}^{2p} |e^{i npi it}|^2dt$
$endgroup$
add a comment |
$begingroup$
I have it!
$int_{0}^{2p} |e^{i npi it}|^2dt=int_{0}^{2} |e^{i npi it}|^2dt+cdots+ int_{2(p-1)}^{2p} |e^{i npi it}|^2dt=pint_{0}^{2p} |e^{i npi it}|^2dt$
$endgroup$
I have it!
$int_{0}^{2p} |e^{i npi it}|^2dt=int_{0}^{2} |e^{i npi it}|^2dt+cdots+ int_{2(p-1)}^{2p} |e^{i npi it}|^2dt=pint_{0}^{2p} |e^{i npi it}|^2dt$
answered Jan 15 at 19:33
eraldcoileraldcoil
395211
395211
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074790%2fshowing-an-inequality-of-a-complex-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Doesn't $int_0^2 e^{inpi t} , dt$ equal zero?
$endgroup$
– angryavian
Jan 15 at 19:04
$begingroup$
Sorry. Now, I fixed it.
$endgroup$
– eraldcoil
Jan 15 at 19:19
$begingroup$
This is just silly; $|e^{inpi t}|=1$.
$endgroup$
– David C. Ullrich
Jan 15 at 23:42