The set of real structures on $mathbb{C}^n$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a...












1












$begingroup$


In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.



Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.



For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.



But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.



    Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.



    For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.



    But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.



      Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.



      For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.



      But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.










      share|cite|improve this question









      $endgroup$




      In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.



      Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.



      For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.



      But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.







      linear-algebra linear-transformations representation-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 16 at 15:29









      Andre GomesAndre Gomes

      920516




      920516






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.



          Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
          $$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
          You need to show two things:




          1) $f$ is surjective, and



          2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.




          These two facts together imply that there is a well defined bijection
          $$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
          given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.



          To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
          begin{align}
          (BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
          &iff Bbar{B}^{-1}=mathrm{Id}_V\
          &iff B=bar{B}\
          &iff Bin GL(n,mathbb{R}).
          end{align}

          Now,
          begin{align}
          f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
          &iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
          &iff B^{-1}Ain GL(n,mathbb{R}).
          end{align}

          This proves 2.



          To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
          $$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
          Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.



          Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.



          Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
          $$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
          and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
          $$A.K=AKA^{-1}.$$
          Now, observe that
          begin{align}
          overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
          &=f(AB)\
          &=(AB)J(AB)^{-1}\
          &=A(BJB^{-1})A^{-1}\
          &=A.(BJB^{-1})\
          &=A.f(B)\
          &=A.overline{f}(B,GL(n,mathbb{R})).
          end{align}

          Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075873%2fthe-set-of-real-structures-on-mathbbcn-is-isomorphic-to-gln-mathbbc%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.



            Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
            $$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
            You need to show two things:




            1) $f$ is surjective, and



            2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.




            These two facts together imply that there is a well defined bijection
            $$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
            given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.



            To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
            begin{align}
            (BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
            &iff Bbar{B}^{-1}=mathrm{Id}_V\
            &iff B=bar{B}\
            &iff Bin GL(n,mathbb{R}).
            end{align}

            Now,
            begin{align}
            f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
            &iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
            &iff B^{-1}Ain GL(n,mathbb{R}).
            end{align}

            This proves 2.



            To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
            $$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
            Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.



            Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.



            Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
            $$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
            and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
            $$A.K=AKA^{-1}.$$
            Now, observe that
            begin{align}
            overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
            &=f(AB)\
            &=(AB)J(AB)^{-1}\
            &=A(BJB^{-1})A^{-1}\
            &=A.(BJB^{-1})\
            &=A.f(B)\
            &=A.overline{f}(B,GL(n,mathbb{R})).
            end{align}

            Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.



              Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
              $$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
              You need to show two things:




              1) $f$ is surjective, and



              2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.




              These two facts together imply that there is a well defined bijection
              $$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
              given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.



              To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
              begin{align}
              (BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
              &iff Bbar{B}^{-1}=mathrm{Id}_V\
              &iff B=bar{B}\
              &iff Bin GL(n,mathbb{R}).
              end{align}

              Now,
              begin{align}
              f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
              &iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
              &iff B^{-1}Ain GL(n,mathbb{R}).
              end{align}

              This proves 2.



              To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
              $$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
              Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.



              Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.



              Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
              $$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
              and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
              $$A.K=AKA^{-1}.$$
              Now, observe that
              begin{align}
              overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
              &=f(AB)\
              &=(AB)J(AB)^{-1}\
              &=A(BJB^{-1})A^{-1}\
              &=A.(BJB^{-1})\
              &=A.f(B)\
              &=A.overline{f}(B,GL(n,mathbb{R})).
              end{align}

              Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.



                Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
                $$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
                You need to show two things:




                1) $f$ is surjective, and



                2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.




                These two facts together imply that there is a well defined bijection
                $$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
                given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.



                To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
                begin{align}
                (BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
                &iff Bbar{B}^{-1}=mathrm{Id}_V\
                &iff B=bar{B}\
                &iff Bin GL(n,mathbb{R}).
                end{align}

                Now,
                begin{align}
                f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
                &iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
                &iff B^{-1}Ain GL(n,mathbb{R}).
                end{align}

                This proves 2.



                To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
                $$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
                Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.



                Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.



                Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
                $$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
                and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
                $$A.K=AKA^{-1}.$$
                Now, observe that
                begin{align}
                overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
                &=f(AB)\
                &=(AB)J(AB)^{-1}\
                &=A(BJB^{-1})A^{-1}\
                &=A.(BJB^{-1})\
                &=A.f(B)\
                &=A.overline{f}(B,GL(n,mathbb{R})).
                end{align}

                Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.






                share|cite|improve this answer











                $endgroup$



                You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.



                Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
                $$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
                You need to show two things:




                1) $f$ is surjective, and



                2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.




                These two facts together imply that there is a well defined bijection
                $$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
                given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.



                To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
                begin{align}
                (BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
                &iff Bbar{B}^{-1}=mathrm{Id}_V\
                &iff B=bar{B}\
                &iff Bin GL(n,mathbb{R}).
                end{align}

                Now,
                begin{align}
                f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
                &iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
                &iff B^{-1}Ain GL(n,mathbb{R}).
                end{align}

                This proves 2.



                To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
                $$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
                Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.



                Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.



                Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
                $$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
                and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
                $$A.K=AKA^{-1}.$$
                Now, observe that
                begin{align}
                overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
                &=f(AB)\
                &=(AB)J(AB)^{-1}\
                &=A(BJB^{-1})A^{-1}\
                &=A.(BJB^{-1})\
                &=A.f(B)\
                &=A.overline{f}(B,GL(n,mathbb{R})).
                end{align}

                Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 18 at 16:07

























                answered Jan 18 at 0:00









                David HillDavid Hill

                9,1111619




                9,1111619






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075873%2fthe-set-of-real-structures-on-mathbbcn-is-isomorphic-to-gln-mathbbc%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith