The set of real structures on $mathbb{C}^n$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a...
$begingroup$
In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.
Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.
For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.
But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.
linear-algebra linear-transformations representation-theory
$endgroup$
add a comment |
$begingroup$
In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.
Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.
For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.
But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.
linear-algebra linear-transformations representation-theory
$endgroup$
add a comment |
$begingroup$
In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.
Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.
For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.
But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.
linear-algebra linear-transformations representation-theory
$endgroup$
In representation theory a real structure on a $G$-module $V$ (finite dimensional complex vector space, in which the group $G$ has a linear action on it) can be definide as a conjugate-linear $G$-map $J:Vto V$ (that is, $J(g.v)=g.J(v)$) s.t. $J^2=id$.
Let $X$ be the set of all real structures on $mathbb{C}^n$. I want to show that $X$ is isomorphic to $GL(n,mathbb{C})/GL(n,mathbb{R})$ as a $GL(n,mathbb{C})$-space.
For this porpose I know that $GL(n,mathbb{C})$ acts on $X$ by $(A,J)mapsto AJA^{-1}$, as $(AJA^{-1})^2=id$.
But I cannot go any further. For example, given a $Bin GL(n,mathbb{R})$ i cannot see why $BJ=id$ for every $Jin X$.
linear-algebra linear-transformations representation-theory
linear-algebra linear-transformations representation-theory
asked Jan 16 at 15:29
Andre GomesAndre Gomes
920516
920516
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.
Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
$$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
You need to show two things:
1) $f$ is surjective, and
2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.
These two facts together imply that there is a well defined bijection
$$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.
To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
begin{align}
(BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
&iff Bbar{B}^{-1}=mathrm{Id}_V\
&iff B=bar{B}\
&iff Bin GL(n,mathbb{R}).
end{align}
Now,
begin{align}
f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
&iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
&iff B^{-1}Ain GL(n,mathbb{R}).
end{align}
This proves 2.
To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
$$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.
Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.
Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
$$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
$$A.K=AKA^{-1}.$$
Now, observe that
begin{align}
overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
&=f(AB)\
&=(AB)J(AB)^{-1}\
&=A(BJB^{-1})A^{-1}\
&=A.(BJB^{-1})\
&=A.f(B)\
&=A.overline{f}(B,GL(n,mathbb{R})).
end{align}
Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075873%2fthe-set-of-real-structures-on-mathbbcn-is-isomorphic-to-gln-mathbbc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.
Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
$$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
You need to show two things:
1) $f$ is surjective, and
2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.
These two facts together imply that there is a well defined bijection
$$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.
To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
begin{align}
(BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
&iff Bbar{B}^{-1}=mathrm{Id}_V\
&iff B=bar{B}\
&iff Bin GL(n,mathbb{R}).
end{align}
Now,
begin{align}
f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
&iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
&iff B^{-1}Ain GL(n,mathbb{R}).
end{align}
This proves 2.
To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
$$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.
Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.
Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
$$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
$$A.K=AKA^{-1}.$$
Now, observe that
begin{align}
overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
&=f(AB)\
&=(AB)J(AB)^{-1}\
&=A(BJB^{-1})A^{-1}\
&=A.(BJB^{-1})\
&=A.f(B)\
&=A.overline{f}(B,GL(n,mathbb{R})).
end{align}
Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.
$endgroup$
add a comment |
$begingroup$
You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.
Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
$$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
You need to show two things:
1) $f$ is surjective, and
2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.
These two facts together imply that there is a well defined bijection
$$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.
To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
begin{align}
(BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
&iff Bbar{B}^{-1}=mathrm{Id}_V\
&iff B=bar{B}\
&iff Bin GL(n,mathbb{R}).
end{align}
Now,
begin{align}
f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
&iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
&iff B^{-1}Ain GL(n,mathbb{R}).
end{align}
This proves 2.
To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
$$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.
Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.
Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
$$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
$$A.K=AKA^{-1}.$$
Now, observe that
begin{align}
overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
&=f(AB)\
&=(AB)J(AB)^{-1}\
&=A(BJB^{-1})A^{-1}\
&=A.(BJB^{-1})\
&=A.f(B)\
&=A.overline{f}(B,GL(n,mathbb{R})).
end{align}
Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.
$endgroup$
add a comment |
$begingroup$
You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.
Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
$$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
You need to show two things:
1) $f$ is surjective, and
2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.
These two facts together imply that there is a well defined bijection
$$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.
To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
begin{align}
(BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
&iff Bbar{B}^{-1}=mathrm{Id}_V\
&iff B=bar{B}\
&iff Bin GL(n,mathbb{R}).
end{align}
Now,
begin{align}
f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
&iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
&iff B^{-1}Ain GL(n,mathbb{R}).
end{align}
This proves 2.
To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
$$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.
Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.
Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
$$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
$$A.K=AKA^{-1}.$$
Now, observe that
begin{align}
overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
&=f(AB)\
&=(AB)J(AB)^{-1}\
&=A(BJB^{-1})A^{-1}\
&=A.(BJB^{-1})\
&=A.f(B)\
&=A.overline{f}(B,GL(n,mathbb{R})).
end{align}
Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.
$endgroup$
You shouldn't expect $BJ=mathrm{Id}$ for all $Bin GL(n,mathbb{R})$.
Try this: Let $V=mathbb{C}^n$ and $J:Vto V$ be the conjugate linear map $J(v)=bar{v}$, where
$$v=begin{pmatrix}a_1\vdots\a_nend{pmatrix};Rightarrow;bar{v}=begin{pmatrix}bar{a_1}\vdots\bar{a_n}end{pmatrix}.$$ Define a map $$f:GL(n,mathbb{C})to X;;;mbox{by};;;f(A)=AJA^{-1}.$$
You need to show two things:
1) $f$ is surjective, and
2) $f(A)=f(B)$ if, and only if, $B^{-1}Ain GL(n,mathbb{R})$.
These two facts together imply that there is a well defined bijection
$$bar{f}:GL(n,mathbb{C})/GL(n,mathbb{R})to X$$
given by $overline{f}(A, GL(n,mathbb{R}))=f(A)$.
To prove 2, note that $f(B)=J$ if, and only if $Bin GL(n,mathbb{R})$. Indeed,
begin{align}
(BJB^{-1})(v)=J(v);forall vin V&iff Bbar{B}^{-1}(bar{v})=bar{v};forall vin V\
&iff Bbar{B}^{-1}=mathrm{Id}_V\
&iff B=bar{B}\
&iff Bin GL(n,mathbb{R}).
end{align}
Now,
begin{align}
f(A)=f(B)&iff AJA^{-1}=BJB^{-1}\
&iff J=B^{-1}AJA^{-1}B=B^{-1}AJ(B^{-1}A)^{-1}\
&iff B^{-1}Ain GL(n,mathbb{R}).
end{align}
This proves 2.
To prove 1, let $Kin X$ and let $V^K={vin Vmid K(v)=v}$ be the set of $K$-fixed points. Let $W=mathrm{span}_{mathbb{C}}V^K$. We claim that $W=V$. If not, $V=Woplus U$ for some complementary subspace $U$. If $uin Ubackslash{0}$, then $K(u)=w+u'$ for some $win W$ and $u'in U$. Since $u+K(u)=w+(u+u')in W$ we must have $u'=-u$. Now, consider the element $2iu-iwin Vbackslash W$. We have
$$K(2iu-iw)=-2i(w-u)+iw=2iu-iw.$$
Hence $2iu-iwin W$, a contradiction. Hence $W=V$ as desired.
Finally, let $beta={v_1,ldots,v_n}subset V^K$ be a basis for $V$. The map $A:Vto V$ given by $A(e_i)=v_i$ ($e_i$ the $i$th coordinate vector) satisfies $f(A)=AJA^{-1}=K$, proving 1.
Now, $GL(n,mathbb{C})$ acts on $GL(n,mathbb{C}/GL(n,mathbb{R})$ by left multipication:
$$A.(B,GL(n,mathbb{R})=(AB),GL(n,mathbb{R}),$$
and $GL(n,mathbb{C})$ acts on $X$ by conjugation:
$$A.K=AKA^{-1}.$$
Now, observe that
begin{align}
overline{f}(A.(B,GL(n,mathbb{R}))&=overline{f}((AB),GL(n,mathbb{R}))\
&=f(AB)\
&=(AB)J(AB)^{-1}\
&=A(BJB^{-1})A^{-1}\
&=A.(BJB^{-1})\
&=A.f(B)\
&=A.overline{f}(B,GL(n,mathbb{R})).
end{align}
Therefore, $overline{f}$ is a map of $GL(n,mathbb{C})$-spaces.
edited Jan 18 at 16:07
answered Jan 18 at 0:00
David HillDavid Hill
9,1111619
9,1111619
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075873%2fthe-set-of-real-structures-on-mathbbcn-is-isomorphic-to-gln-mathbbc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown