$a+b=c+d$ , $a^3+b^3=c^3+d^3$ , prove that $a^{2009}+b^{2009}=c^{2009}+d^{2009}$
$begingroup$
I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?
algebra-precalculus
$endgroup$
$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28
1
$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34
2
$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do withlinear-algebra
?
$endgroup$
– José Carlos Santos
Jan 20 at 10:35
add a comment |
$begingroup$
I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?
algebra-precalculus
$endgroup$
I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?
algebra-precalculus
algebra-precalculus
edited Jan 20 at 11:07
scrutari
1679
1679
asked Jan 20 at 10:25
RiyaRiya
211
211
$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28
1
$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34
2
$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do withlinear-algebra
?
$endgroup$
– José Carlos Santos
Jan 20 at 10:35
add a comment |
$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28
1
$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34
2
$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do withlinear-algebra
?
$endgroup$
– José Carlos Santos
Jan 20 at 10:35
$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28
$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28
1
1
$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34
$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34
2
2
$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do with
linear-algebra
?$endgroup$
– José Carlos Santos
Jan 20 at 10:35
$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do with
linear-algebra
?$endgroup$
– José Carlos Santos
Jan 20 at 10:35
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$(a+b)^3=(c+d)^3$$
$$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$
If $a+bne0, ab=cd (1)$
$iffdfrac ad=dfrac cb=k$(say) $ (2)$
$a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$
Either $d=biff a=c$
or $k=1$ use this in $(2)$
Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$
$c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$
In both bases we can prove $$a^n+b^n=c^n+d^n$$
$endgroup$
add a comment |
$begingroup$
Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.
$endgroup$
add a comment |
$begingroup$
Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080393%2fab-cd-a3b3-c3d3-prove-that-a2009b2009-c2009d2009%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$(a+b)^3=(c+d)^3$$
$$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$
If $a+bne0, ab=cd (1)$
$iffdfrac ad=dfrac cb=k$(say) $ (2)$
$a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$
Either $d=biff a=c$
or $k=1$ use this in $(2)$
Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$
$c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$
In both bases we can prove $$a^n+b^n=c^n+d^n$$
$endgroup$
add a comment |
$begingroup$
$$(a+b)^3=(c+d)^3$$
$$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$
If $a+bne0, ab=cd (1)$
$iffdfrac ad=dfrac cb=k$(say) $ (2)$
$a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$
Either $d=biff a=c$
or $k=1$ use this in $(2)$
Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$
$c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$
In both bases we can prove $$a^n+b^n=c^n+d^n$$
$endgroup$
add a comment |
$begingroup$
$$(a+b)^3=(c+d)^3$$
$$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$
If $a+bne0, ab=cd (1)$
$iffdfrac ad=dfrac cb=k$(say) $ (2)$
$a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$
Either $d=biff a=c$
or $k=1$ use this in $(2)$
Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$
$c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$
In both bases we can prove $$a^n+b^n=c^n+d^n$$
$endgroup$
$$(a+b)^3=(c+d)^3$$
$$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$
If $a+bne0, ab=cd (1)$
$iffdfrac ad=dfrac cb=k$(say) $ (2)$
$a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$
Either $d=biff a=c$
or $k=1$ use this in $(2)$
Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$
$c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$
In both bases we can prove $$a^n+b^n=c^n+d^n$$
answered Jan 20 at 10:45
lab bhattacharjeelab bhattacharjee
226k15157275
226k15157275
add a comment |
add a comment |
$begingroup$
Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.
$endgroup$
add a comment |
$begingroup$
Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.
$endgroup$
add a comment |
$begingroup$
Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.
$endgroup$
Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.
answered Jan 20 at 10:30


egregegreg
183k1486205
183k1486205
add a comment |
add a comment |
$begingroup$
Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$
$endgroup$
add a comment |
$begingroup$
Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$
$endgroup$
add a comment |
$begingroup$
Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$
$endgroup$
Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$
answered Jan 20 at 10:34


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
76.8k42866
76.8k42866
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080393%2fab-cd-a3b3-c3d3-prove-that-a2009b2009-c2009d2009%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28
1
$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34
2
$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do with
linear-algebra
?$endgroup$
– José Carlos Santos
Jan 20 at 10:35