$a+b=c+d$ , $a^3+b^3=c^3+d^3$ , prove that $a^{2009}+b^{2009}=c^{2009}+d^{2009}$












3












$begingroup$


I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
    $endgroup$
    – Ewan Delanoy
    Jan 20 at 10:28






  • 1




    $begingroup$
    @Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
    $endgroup$
    – user289143
    Jan 20 at 10:34






  • 2




    $begingroup$
    Welcome to MSE. You should choose your tags carefully. What has this to do with linear-algebra?
    $endgroup$
    – José Carlos Santos
    Jan 20 at 10:35
















3












$begingroup$


I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
    $endgroup$
    – Ewan Delanoy
    Jan 20 at 10:28






  • 1




    $begingroup$
    @Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
    $endgroup$
    – user289143
    Jan 20 at 10:34






  • 2




    $begingroup$
    Welcome to MSE. You should choose your tags carefully. What has this to do with linear-algebra?
    $endgroup$
    – José Carlos Santos
    Jan 20 at 10:35














3












3








3





$begingroup$


I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?










share|cite|improve this question











$endgroup$




I've got $a^2+b^2-ab=c^2+d^2-cd$.
I tried squaring or cubing it repeatedly but I didn't get what I wanted.
Now how do I proceed?







algebra-precalculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 20 at 11:07









scrutari

1679




1679










asked Jan 20 at 10:25









RiyaRiya

211




211












  • $begingroup$
    This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
    $endgroup$
    – Ewan Delanoy
    Jan 20 at 10:28






  • 1




    $begingroup$
    @Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
    $endgroup$
    – user289143
    Jan 20 at 10:34






  • 2




    $begingroup$
    Welcome to MSE. You should choose your tags carefully. What has this to do with linear-algebra?
    $endgroup$
    – José Carlos Santos
    Jan 20 at 10:35


















  • $begingroup$
    This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
    $endgroup$
    – Ewan Delanoy
    Jan 20 at 10:28






  • 1




    $begingroup$
    @Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
    $endgroup$
    – user289143
    Jan 20 at 10:34






  • 2




    $begingroup$
    Welcome to MSE. You should choose your tags carefully. What has this to do with linear-algebra?
    $endgroup$
    – José Carlos Santos
    Jan 20 at 10:35
















$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28




$begingroup$
This is very probably a duplicate. Hint : try to express $a^n+b^n$ (for odd $n$) in terms of $a+b$ and $a^3+b^3$
$endgroup$
– Ewan Delanoy
Jan 20 at 10:28




1




1




$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34




$begingroup$
@Arthur $a^3+b^3=(a+b)(a^2+b^2-ab)$
$endgroup$
– user289143
Jan 20 at 10:34




2




2




$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do with linear-algebra?
$endgroup$
– José Carlos Santos
Jan 20 at 10:35




$begingroup$
Welcome to MSE. You should choose your tags carefully. What has this to do with linear-algebra?
$endgroup$
– José Carlos Santos
Jan 20 at 10:35










3 Answers
3






active

oldest

votes


















2












$begingroup$

$$(a+b)^3=(c+d)^3$$



$$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$



If $a+bne0, ab=cd (1)$



$iffdfrac ad=dfrac cb=k$(say) $ (2)$



$a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$



Either $d=biff a=c$



or $k=1$ use this in $(2)$



Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$



$c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$



In both bases we can prove $$a^n+b^n=c^n+d^n$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080393%2fab-cd-a3b3-c3d3-prove-that-a2009b2009-c2009d2009%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        $$(a+b)^3=(c+d)^3$$



        $$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$



        If $a+bne0, ab=cd (1)$



        $iffdfrac ad=dfrac cb=k$(say) $ (2)$



        $a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$



        Either $d=biff a=c$



        or $k=1$ use this in $(2)$



        Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$



        $c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$



        In both bases we can prove $$a^n+b^n=c^n+d^n$$






        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          $$(a+b)^3=(c+d)^3$$



          $$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$



          If $a+bne0, ab=cd (1)$



          $iffdfrac ad=dfrac cb=k$(say) $ (2)$



          $a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$



          Either $d=biff a=c$



          or $k=1$ use this in $(2)$



          Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$



          $c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$



          In both bases we can prove $$a^n+b^n=c^n+d^n$$






          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            $$(a+b)^3=(c+d)^3$$



            $$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$



            If $a+bne0, ab=cd (1)$



            $iffdfrac ad=dfrac cb=k$(say) $ (2)$



            $a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$



            Either $d=biff a=c$



            or $k=1$ use this in $(2)$



            Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$



            $c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$



            In both bases we can prove $$a^n+b^n=c^n+d^n$$






            share|cite|improve this answer









            $endgroup$



            $$(a+b)^3=(c+d)^3$$



            $$iff a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$



            If $a+bne0, ab=cd (1)$



            $iffdfrac ad=dfrac cb=k$(say) $ (2)$



            $a+b=c+dimplies dk+b=bk+diff d(k-1)=b(k-1)$



            Either $d=biff a=c$



            or $k=1$ use this in $(2)$



            Or Using $(1), ab=cda+b=c+d$ So if $a,b$ are roots of $t^2+bt+c=0,$



            $c,d$ will be the roots of same equation $implies{a,b}equiv{c,d}$



            In both bases we can prove $$a^n+b^n=c^n+d^n$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 20 at 10:45









            lab bhattacharjeelab bhattacharjee

            226k15157275




            226k15157275























                0












                $begingroup$

                Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.






                    share|cite|improve this answer









                    $endgroup$



                    Hint: the case $a+b=c+d=0$ is obvious, so you can assume $a+b=c+dne0$; prove that $ab=cd$. Further hint: $x^2-xy+y^2=(x+y)^2-{color{red}{?}}$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 20 at 10:30









                    egregegreg

                    183k1486205




                    183k1486205























                        0












                        $begingroup$

                        Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$






                            share|cite|improve this answer









                            $endgroup$



                            Use that we get from $$a+b=c+d$$ so $$a^3+b^3+3ab(a+b)=c^3+d^3+3cd(c+d)$$ and $$x^3+y^3=(x+y)(x^2-xy+y^2)$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 20 at 10:34









                            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                            76.8k42866




                            76.8k42866






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080393%2fab-cd-a3b3-c3d3-prove-that-a2009b2009-c2009d2009%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith