At what time $t$ is velocity perpendicular to acceleration?
$begingroup$
So, for $textbf{r}=textbf{r}(t)$,
$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement
Therefore,
$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity
And,
$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration
To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.
$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$
$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$
Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!
Thanks.
vectors orthogonality classical-mechanics
$endgroup$
add a comment |
$begingroup$
So, for $textbf{r}=textbf{r}(t)$,
$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement
Therefore,
$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity
And,
$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration
To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.
$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$
$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$
Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!
Thanks.
vectors orthogonality classical-mechanics
$endgroup$
1
$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34
add a comment |
$begingroup$
So, for $textbf{r}=textbf{r}(t)$,
$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement
Therefore,
$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity
And,
$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration
To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.
$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$
$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$
Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!
Thanks.
vectors orthogonality classical-mechanics
$endgroup$
So, for $textbf{r}=textbf{r}(t)$,
$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement
Therefore,
$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity
And,
$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration
To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.
$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$
$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$
Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!
Thanks.
vectors orthogonality classical-mechanics
vectors orthogonality classical-mechanics
asked May 2 '17 at 6:32
Kyle JohnsonKyle Johnson
275
275
1
$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34
add a comment |
1
$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34
1
1
$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34
$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$
In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.
$endgroup$
$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50
$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2261776%2fat-what-time-t-is-velocity-perpendicular-to-acceleration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$
In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.
$endgroup$
$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50
$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51
add a comment |
$begingroup$
As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$
In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.
$endgroup$
$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50
$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51
add a comment |
$begingroup$
As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$
In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.
$endgroup$
As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$
In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.
answered May 2 '17 at 6:36
Lazy LeeLazy Lee
3,4711517
3,4711517
$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50
$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51
add a comment |
$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50
$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51
$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50
$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50
$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51
$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2261776%2fat-what-time-t-is-velocity-perpendicular-to-acceleration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34