At what time $t$ is velocity perpendicular to acceleration?












0












$begingroup$


So, for $textbf{r}=textbf{r}(t)$,



$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement



Therefore,



$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity



And,



$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration



To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.



$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$



$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$



Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!



Thanks.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
    $endgroup$
    – Lord Shark the Unknown
    May 2 '17 at 6:34
















0












$begingroup$


So, for $textbf{r}=textbf{r}(t)$,



$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement



Therefore,



$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity



And,



$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration



To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.



$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$



$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$



Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!



Thanks.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
    $endgroup$
    – Lord Shark the Unknown
    May 2 '17 at 6:34














0












0








0





$begingroup$


So, for $textbf{r}=textbf{r}(t)$,



$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement



Therefore,



$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity



And,



$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration



To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.



$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$



$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$



Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!



Thanks.










share|cite|improve this question









$endgroup$




So, for $textbf{r}=textbf{r}(t)$,



$textbf{r}=(t+3)textbf{i}+(2t-t^{2})textbf{j}+(3t-t^{2})textbf{k}$ = displacement



Therefore,



$textbf{v}=textbf{r}'=textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}$ = velocity



And,



$textbf{a}=textbf{r}''=-2textbf{j}-2textbf{k}$ = acceleration



To show orthogonality, I know $textbf{a} cdot textbf{b}=0$, so for velocity and acceleration to be orthogonal (or perpendicular), $textbf{v} cdot textbf{a}=0$.



$textbf{v} cdot textbf{a}= (textbf{i}+2textbf{j}-2ttextbf{j}+3textbf{k}-2ttextbf{k}) cdot (-2textbf{j}-2textbf{k})=[textbf{i}+(2+2t)textbf{j}+(3-2t)textbf{k}] cdot (-2textbf{j}-2textbf{k})=(1)(0)textbf{i}+(2+2t)(-2)textbf{j}+(3-2t)(-2)textbf{k}=-4textbf{j}-4ttextbf{j}-6textbf{k}+4ttextbf{k}=0$



$implies 4ttextbf{j}-4ttextbf{k}=-4textbf{j}-6textbf{k}$



Obviously, there is no value for $t$ which satisfies the above, so I think I may have made a mistake!



Thanks.







vectors orthogonality classical-mechanics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 2 '17 at 6:32









Kyle JohnsonKyle Johnson

275




275








  • 1




    $begingroup$
    The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
    $endgroup$
    – Lord Shark the Unknown
    May 2 '17 at 6:34














  • 1




    $begingroup$
    The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
    $endgroup$
    – Lord Shark the Unknown
    May 2 '17 at 6:34








1




1




$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34




$begingroup$
The dot product if often called the "scalar product". That reminds its users that its output is a scalar not a vector.
$endgroup$
– Lord Shark the Unknown
May 2 '17 at 6:34










1 Answer
1






active

oldest

votes


















0












$begingroup$

As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$



In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Oh I see. Thank you very much for your help!
    $endgroup$
    – Kyle Johnson
    May 2 '17 at 6:50










  • $begingroup$
    Glad to have helped! :) :)
    $endgroup$
    – Lazy Lee
    May 2 '17 at 6:51











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2261776%2fat-what-time-t-is-velocity-perpendicular-to-acceleration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$



In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Oh I see. Thank you very much for your help!
    $endgroup$
    – Kyle Johnson
    May 2 '17 at 6:50










  • $begingroup$
    Glad to have helped! :) :)
    $endgroup$
    – Lazy Lee
    May 2 '17 at 6:51
















0












$begingroup$

As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$



In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Oh I see. Thank you very much for your help!
    $endgroup$
    – Kyle Johnson
    May 2 '17 at 6:50










  • $begingroup$
    Glad to have helped! :) :)
    $endgroup$
    – Lazy Lee
    May 2 '17 at 6:51














0












0








0





$begingroup$

As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$



In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.






share|cite|improve this answer









$endgroup$



As you wrote, $textbf v=textbf i+(2-2t)cdot textbf j + (3-2t)cdot textbf k$ and $textbf a=-2cdot textbf j-2cdot textbf k$.
The vector product and the solution when its zero is derived by $$textbf vcdot textbf a =-2(2-2t)-2(3-2t)=0implies t=frac{5}{4}$$



In your solution, you should note that $textbf jcdot textbf j = textbf kcdot textbf k = 1$, and you also miswrote $"(2+2t)(-2)"$ in your equation, which should be $(2-2t)(-2)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered May 2 '17 at 6:36









Lazy LeeLazy Lee

3,4711517




3,4711517












  • $begingroup$
    Oh I see. Thank you very much for your help!
    $endgroup$
    – Kyle Johnson
    May 2 '17 at 6:50










  • $begingroup$
    Glad to have helped! :) :)
    $endgroup$
    – Lazy Lee
    May 2 '17 at 6:51


















  • $begingroup$
    Oh I see. Thank you very much for your help!
    $endgroup$
    – Kyle Johnson
    May 2 '17 at 6:50










  • $begingroup$
    Glad to have helped! :) :)
    $endgroup$
    – Lazy Lee
    May 2 '17 at 6:51
















$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50




$begingroup$
Oh I see. Thank you very much for your help!
$endgroup$
– Kyle Johnson
May 2 '17 at 6:50












$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51




$begingroup$
Glad to have helped! :) :)
$endgroup$
– Lazy Lee
May 2 '17 at 6:51


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2261776%2fat-what-time-t-is-velocity-perpendicular-to-acceleration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith