Evaluating $int_0^{pi/2}operatorname{arcsinh}(2tan x)dx$
$begingroup$
How to prove $$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx=frac43G+frac13pilnleft(2+sqrt3right),$$where $G$ is Catalan's constant?
I have a premonition that this integral is related to $Imoperatorname{Li}_2left(2pmsqrt3right)$.
Attempt
$$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx\=int_0^inftyfrac{operatorname{arcsinh}(2x)}{1+x^2}dx\
=2int_0^inftyfrac{xcosh x}{4+sinh^2x}dx\
=2int_0^inftyfrac{xcosh x}{3+cosh^2x}dx\
=2int_0^inftysum_{n=0}^infty x(-3)^ncosh^{-2n-1}(x)dx$$
I failed to integrate $xcosh^{-2n-1}(x)$. Mathematica returns a hypergeometric term while integrating it.
calculus integration definite-integrals polylogarithm
$endgroup$
add a comment |
$begingroup$
How to prove $$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx=frac43G+frac13pilnleft(2+sqrt3right),$$where $G$ is Catalan's constant?
I have a premonition that this integral is related to $Imoperatorname{Li}_2left(2pmsqrt3right)$.
Attempt
$$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx\=int_0^inftyfrac{operatorname{arcsinh}(2x)}{1+x^2}dx\
=2int_0^inftyfrac{xcosh x}{4+sinh^2x}dx\
=2int_0^inftyfrac{xcosh x}{3+cosh^2x}dx\
=2int_0^inftysum_{n=0}^infty x(-3)^ncosh^{-2n-1}(x)dx$$
I failed to integrate $xcosh^{-2n-1}(x)$. Mathematica returns a hypergeometric term while integrating it.
calculus integration definite-integrals polylogarithm
$endgroup$
add a comment |
$begingroup$
How to prove $$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx=frac43G+frac13pilnleft(2+sqrt3right),$$where $G$ is Catalan's constant?
I have a premonition that this integral is related to $Imoperatorname{Li}_2left(2pmsqrt3right)$.
Attempt
$$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx\=int_0^inftyfrac{operatorname{arcsinh}(2x)}{1+x^2}dx\
=2int_0^inftyfrac{xcosh x}{4+sinh^2x}dx\
=2int_0^inftyfrac{xcosh x}{3+cosh^2x}dx\
=2int_0^inftysum_{n=0}^infty x(-3)^ncosh^{-2n-1}(x)dx$$
I failed to integrate $xcosh^{-2n-1}(x)$. Mathematica returns a hypergeometric term while integrating it.
calculus integration definite-integrals polylogarithm
$endgroup$
How to prove $$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx=frac43G+frac13pilnleft(2+sqrt3right),$$where $G$ is Catalan's constant?
I have a premonition that this integral is related to $Imoperatorname{Li}_2left(2pmsqrt3right)$.
Attempt
$$int_0^{pi/2}operatorname{arcsinh}(2tan x)dx\=int_0^inftyfrac{operatorname{arcsinh}(2x)}{1+x^2}dx\
=2int_0^inftyfrac{xcosh x}{4+sinh^2x}dx\
=2int_0^inftyfrac{xcosh x}{3+cosh^2x}dx\
=2int_0^inftysum_{n=0}^infty x(-3)^ncosh^{-2n-1}(x)dx$$
I failed to integrate $xcosh^{-2n-1}(x)$. Mathematica returns a hypergeometric term while integrating it.
calculus integration definite-integrals polylogarithm
calculus integration definite-integrals polylogarithm
asked Jan 22 at 8:15
Kemono ChenKemono Chen
3,1941844
3,1941844
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
I will begin with the same approach as in @DavidG's answer, but will settle in a different argument. Let
$$ J(t) = int_{0}^{infty} frac{operatorname{arsinh}(tx)}{1+x^2} , mathrm{d}x. $$
Our goal is to compute $J(2)$ using Feynman's trick. Differentiating $J(t)$ and substituting $x=sqrt{u^{-2}-1}$, we obtain
begin{align*}
J'(t)
= int_{0}^{infty} frac{x}{(1+x^2)sqrt{1+t^2x^2}} , mathrm{d}x
= int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}u.
end{align*}
So it follows that
begin{align*}
J(2)
&= int_{0}^{2} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t \
&= int_{0}^{1} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t
+ int_{1}^{2} int_{0}^{1} frac{1}{sqrt{1 + (t^2-1)(1-u^2)}} , mathrm{d}umathrm{d}t.
end{align*}
The inner integral is easily computed, yielding
begin{align*}
J(2)
&= int_{0}^{1} frac{operatorname{artanh}left( sqrt{1 - t^2} right)}{sqrt{1 - t^2}} , mathrm{d}t
+ int_{1}^{2} frac{arctanleft(sqrt{t^2-1}right)}{sqrt{t^2 - 1}} , mathrm{d}t.
end{align*}
Now we substitute $t = operatorname{sech} varphi$ for the first integral and $t = sec theta$ for the second integral. This yields
begin{align*}
J(2)
&= int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
+ int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta.
end{align*}
These integrals can be computed as follows:
Using $ operatorname{sech}varphi = frac{2e^{-varphi}}{1 + e^{-2varphi}} = 2 sum_{n=0}^{infty} (-1)^n e^{-(2n+1)varphi} $, we obtain
$$ int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} (-1)^n int_{0}^{infty} varphi e^{-(2n+1)varphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} frac{(-1)^n}{(2n+1)^2}
= 2G. $$
Taking integration by parts,
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= left[ - theta log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) right]_{0}^{frac{pi}{3}} + int_{0}^{frac{pi}{3}} log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) , mathrm{d}theta \
&= frac{pi}{3} log left( 2 + sqrt{3} right) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} log left( tan theta right) , mathrm{d}theta.
end{align*}
This can be computed by using the Fourier series $log left( tan theta right) = - 2 sum_{n=0}^{infty} frac{cos(4n+2)theta}{2n+1} $ to yield
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= frac{pi}{3} log left( 2 + sqrt{3} right) - 2 sum_{n=0}^{infty} frac{sinleft( frac{pi}{2} (2n+1) right) - sinleft( frac{pi}{6} (2n+1) right)}{(2n+1)^2} \
&= frac{pi}{3} log left( 2 + sqrt{3} right) - frac{2}{3}G.
end{align*}
Combining two result, we obtain the desired answer.
$endgroup$
1
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
add a comment |
$begingroup$
On the path of Kemono Chen...
begin{align}J&=int_0^{pi/2}operatorname{arcsinh}(2tan x)dxend{align}
Perform the change of variable $y=operatorname{arcsinh}(2tan x)$,
begin{align}J&=int_0^{+infty}frac{2xcosh x}{4+sinh^2 x},dx\
&=int_0^{+infty}frac{4xleft(text{e}^{x}+text{e}^{-x}right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
&=int_0^{+infty}frac{4xtext{e}^{-x}left(text{e}^{2x}+1right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
end{align}
Perform the change of variable $y=text{e}^{-x}$,
begin{align}J&=-int_0^1 frac{4ln xleft(1+frac{1}{x^2}right)}{14+x^2+frac{1}{x^2}}\
&=-int_0^1 frac{4ln xleft(1+x^2right)}{x^4+14x^2+1}\
&=left[-arctanleft(frac{4x}{1-x^2}right)ln xright]_0^1+int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(left(2+sqrt{3}right)xright)}{x},dx+int_0^1 frac{arctanleft(left(2-sqrt{3}right)xright)}{x},dx\
end{align}
In the first integral perform the change of variable $y=left(2+sqrt{3}right)x$,
In the second integral perform the change of variable $y=left(2-sqrt{3}right)x$,
begin{align}J&=int_0^{2+sqrt{3}}frac{arctan x}{x},dx+int_0^{2-sqrt{3}}frac{arctan x}{x},dx\
&=Big[arctan xln xBig]_0^{2+sqrt{3}}-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+Big[arctan xln xBig]_0^{2-sqrt{3}}-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{5pi}{12}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+frac{pi}{12}lnleft(2-sqrt{3}right)-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx
end{align}
In the first integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_{2-sqrt{3}}^{+infty}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_0^{+infty}frac{ln x}{1+x^2},dx-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
end{align}
Perform the change of variable $y=tan x$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{frac{pi}{12}}lnleft(tan xright),dx\
end{align}
It is well known that,
begin{align}
int_0^{frac{pi}{12}}lnleft(tan xright),dx=-frac{2}{3}text{G}
end{align}
(see: Integral: $int_0^{pi/12} ln(tan x),dx$ )
Thus,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2times -frac{2}{3}text{G}\
&=boxed{frac{pi}{3}lnleft(2+sqrt{3}right)+frac{4}{3}text{G}}
end{align}
NB:
Observe that,
begin{align}2-sqrt{3}&=frac{1}{2+sqrt{3}}\
lnleft(2-sqrt{3}right)&=-lnleft(2+sqrt{3}right)\
int_0^infty frac{ln x}{1+x^2},dx&=0
end{align}
(perform the change of variable $y=dfrac{1}{x}$ )
$endgroup$
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
How did you do $$intarctanfrac{4x}{1-x^2}frac{mathrm dx}{x}=intarctan(2+sqrt3)xfrac{mathrm dx}{x}+intarctan(2-sqrt3)xfrac{mathrm dx}{x}$$
$endgroup$
– clathratus
Jan 22 at 16:10
1
$begingroup$
@Clathratus: if $ab<1$then begin{align}arctan a+arctan b=arctanleft(frac{a+b}{1-ab}right)end{align}
$endgroup$
– FDP
Jan 22 at 16:23
add a comment |
$begingroup$
Here is another variation along a theme which like @DavidG approach uses Feynman's trick of differentiating under the integral sign.
Let
$$I(a) = int_0^{frac{pi}{2}} operatorname{arcsinh} (a tan x) , dx, qquad a > 1.$$
We are required to find $I(2)$. We start by finding $I(1)$ first, which will be needed later on.
For $a = 1$ we have
begin{align}
I(1) &= int_0^{frac{pi}{2}} operatorname{arcsinh} (tan x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1 + sin x}{cos x} right ) , dx\
&= int_0^{frac{pi}{2}} ln (1 + sin x) , dx - int_0^{frac{pi}{2}} ln (cos x) , dx.
end{align}
Now the first of these integrals can be found, for example, by rewriting it as
begin{align}
int_0^{frac{pi}{2}} ln (1 + sin x) , dx &= int_0^{frac{pi}{2}} ln (1 + cos x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1}{2} cos^2 frac{x}{2} right ) , dx\
&= frac{pi}{2} ln 2 + 4 int_0^{frac{pi}{4}} ln (cos x) , dx
end{align}
and then employing the Fourier series representation for $ln (cos x)$ found here. The final result is
$$int_0^{frac{pi}{2}} ln (1 + sin x) , dx = 2 mathbf{G} - frac{pi}{2} ln 2.$$
Here $mathbf{G}$ is Catalan's constant.
The second of the integrals is very well known. Here
$$int_0^{frac{pi}{2}} ln (cos x) , dx = - frac{pi}{2} ln 2.$$
Thus $I(1) = 2 mathbf{G}$.
Moving to the main event, by differentiating under the integral sign with respect to $a$ we have
begin{align}
I'(a) &= int_0^{frac{pi}{2}} frac{tan x}{sqrt{a^2 tan^2 x + 1}} , dx\
&= int_0^{frac{pi}{2}} frac{sin x}{sqrt{a^2 - (a^2 - 1) cos^2 x}} , dx.
end{align}
Observe the term $(a^2 - 1)$ is positive since $a > 1$. Letting $u = cos x$ one has
$$I'(a) = int_0^1 frac{du}{sqrt{a^2 - (a^2 - 1) u^2}} = frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ).$$
As we require $I(2)$ observe that
$$I(2) - I(1) = int_1^2 I'(a) , da.$$
Thus
$$I(2) = 2 mathbf{G} + int_1^2 frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ) , da.$$
Integrating by parts leads to
$$I(2) = 2 mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_1^2 frac{cosh^{-1} a}{a sqrt{a^2 - 1}} , da.$$
Now let $a = cosh t$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_0^{ln(2 + sqrt{3})} frac{t}{cosh t} , dt.$$
Then let $t = ln y$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_1^{2 + sqrt{3}} frac{ln y}{1 + y^2} , dy.$$
Now let $y = tan theta$. Then we have
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_{frac{pi}{4}}^{frac{5pi}{12}} ln (tan theta) , dtheta.$$
Finally, enforcing a substitution of $theta mapsto dfrac{pi}{2} - theta$ leads to
begin{align}
I(2) &= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} ln (tan theta) , dtheta\
&= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2int_0^{frac{pi}{4}} ln (tan theta) , dtheta - 2 int_0^{frac{pi}{12}} ln (tan theta) , dtheta.
end{align}
For the first of the integrals we have
$$int_0^{frac{pi}{4}} ln (tan x) , dx = -mathbf{G}.$$
While for the second of the integrals we have
$$int_0^{frac{pi}{12}} ln (tan x) , dx = -frac{2}{3} mathbf{G}.$$
So finally
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2mathbf{G} + frac{4}{3} mathbf{G},$$
or
$$int_0^{frac{pi}{2}} operatorname{arcsinh} (2 tan x) , dx = frac{pi}{3} ln (2 + sqrt{3}) + frac{4}{3} mathbf{G},$$
as announced.
$endgroup$
1
$begingroup$
begin{align}A&=int_0^{frac{pi}{4}}ln(cos x),dx\ B&=int_0^{frac{pi}{4}}ln(sin x),dx\ B-A&=int_0^{frac{pi}{4}}ln(tan x),dx\ &=-text{G}\ A+B&=int_0^{frac{pi}{4}}ln(sin xcos x),dx\ &=int_0^{frac{pi}{4}}lnleft(frac{sin(2x)}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(frac{sin x}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(sin xright),dx-frac{pi}{4}ln 2\ &=-frac{1}{2}piln 2\ A&=frac{1}{2}left(A+B-left(B-Aright)right)\ &=frac{1}{2}text{G}-frac{1}{4}piln 2 end{align}
$endgroup$
– FDP
Jan 23 at 13:44
$begingroup$
Yes, very nice.
$endgroup$
– omegadot
Jan 24 at 1:29
add a comment |
$begingroup$
Sorry in a rush, so only a PARTIAL SOLUTION:
Here I will employ Feynman's Trick:
begin{equation}
I = int_0^{infty}frac{operatorname{arcsinh(2x)}}{1 + x^2}:dx
end{equation}
Let
begin{equation}
J(t) = int_0^{infty}frac{operatorname{arcsinh(tx)}}{1 + x^2}:dx
end{equation}
We observe that $J(2) = I$ and $J(0) = 0$. Using Leibniz's Integral rule we differentiate with respect to '$t$':
begin{equation}
J'(t) = int_0^{infty}frac{x}{sqrt{1 + t^2x^2}}frac{1}{1 + x^2}:dx = left[frac{1}{sqrt{t^2 - 1}} cdot arctanleft(sqrt{frac{1 + t^2x^2}{t^2 - 1}} right) right]_0^{infty} = frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{1}{sqrt{t^2 -1}} right) right]
end{equation}
Thus,
begin{align}
J(t) &= int frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{x}{sqrt{t^2 -1}} right) right]:dt \
&= int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt - int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = I_1 - I_2
end{align}
For $I_1$:
begin{equation}
I_1 = int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt = frac{pi}{2}lnleft| sqrt{t^2 - 1} + tright| + C_1
end{equation}
Where $C_1$ is the constant of integration. Note that $I_1(2) = lnleft|2 + sqrt{3} right|$
For $I_2$:
begin{equation}
I_2 = int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt
end{equation}
Unfortunately this is not so easy to evaluate. I will first make the substitution $u = frac{1}{sqrt{t^2 - 1}}$:
begin{align}
I_2 &= int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = int u cdot arctan(u) cdot frac{-u^4}{sqrt{1 +u^2}}:du\
& = - int frac{-u^5}{sqrt{1 +u^2}} cdot arctan(u) :du
end{align}
$endgroup$
$begingroup$
Will post up full solution later.
$endgroup$
– DavidG
Jan 22 at 10:08
add a comment |
$begingroup$
$$
begin{align}newcommand{arcsinh}{operatorname{arcsinh}}
int_0^inftyfrac{arcsinh(x)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x,mathrm{d}x}{cosh(x)}tag{1a}\
&=int_0^inftyfrac{2x,mathrm{d}x}{e^x+e^{-x}}tag{1b}\
&=2sum_{k=0}^infty(-1)^kint_0^infty x,e^{-(2k+1)x},mathrm{d}xtag{1c}\ &=2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}tag{1d}\[6pt]
&=2mathrm{G}tag{1e}
end{align}
$$
Explanation:
$text{(1a)}$: substitute $xmapstosinh(x)$
$text{(1b)}$: write $cosh(x)$ as exponentials
$text{(1c)}$: expand $left(e^x+e^{-x}right)^{-1}$ as a power series
$text{(1d)}$: evaluate the integral
$text{(1e)}$: use the definition of Catalan's Constant
$$
begin{align}
frac{mathrm{d}}{mathrm{d}a}int_0^inftyfrac{arcsinh(ax)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x}{1+x^2}frac{mathrm{d}x}{sqrt{1+a^2x^2}}tag{2a}\
&=int_0^inftyfrac{x}{a^2+x^2}frac{mathrm{d}x}{sqrt{1+x^2}}tag{2b}\
&=int_0^{pi/2}frac{mathrm{d}sec(x)}{a^2+tan^2(x)}tag{2c}\
&=int_1^inftyfrac{mathrm{d}x}{x^2+left(a^2-1right)}tag{2d}\
&=frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}}tag{2e}
end{align}
$$
Explanation:
$text{(2a)}$: $frac{mathrm{d}}{mathrm{d}a}arcsinh(ax)=frac{x}{sqrt{1+a^2x^2}}$
$text{(2b)}$: substitute $xmapsto x/a$
$text{(2c)}$: substitute $xmapstotan(x)$
$text{(2d)}$: substitute $sec(x)mapsto x$
$text{(2e)}$: arctan integral
Therefore,
$$
begin{align}newcommand{Li}{operatorname{Li}}
int_0^inftyfrac{arcsinh(2x)}{1+x^2},mathrm{d}x
&=2mathrm{G}+int_1^2frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}},mathrm{d}atag{3a}\
&=2mathrm{G}+int_0^{pi/3}frac{a}{cos(a)},mathrm{d}atag{3b}\
&=2mathrm{G}+2int_0^{pi/3}frac{a}{e^{ia}+e^{-ia}},mathrm{d}atag{3c}\
&=2mathrm{G}+2sum_{k=0}^infty(-1)^kint_0^{pi/3}ae^{-i(2k+1)a},mathrm{d}atag{3d}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}int_0^{(2k+1)pi/3}ae^{-ia},mathrm{d}atag{3e}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[(1+i(2k+1)pi/3)e^{-i(2k+1)pi/3}-1right]tag{3f}\
&=2mathrm{G}+fracpi3logleft(frac{2+sqrt3+i}{2-sqrt3-i}right)+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[e^{-i(2k+1)pi/3}-1right]tag{3g}\
&=2mathrm{G}+fracpi3logleft(left(2+sqrt3right)iright)
+sum_{k=0}^infty(-1)^kscriptsizeleft[frac{-1-isqrt3}{(6k+1)^2}-frac{-4}{(6k+3)^2}+frac{-1+isqrt3}{(6k+5)^2}right]tag{3h}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-sqrt3sum_{k=0}^infty(-1)^kscriptsizeleft(frac1{(6k+1)^2}-frac1{(6k+5)^2}right)right]tag{3i}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-frac{sqrt3}{36}sum_{kinmathbb{Z}}frac{(-1)^k}{left(k+frac16right)^2}right]tag{3j}\
&=bbox[5px,border:2px solid #C0A000]{frac43mathrm{G}+fracpi3logleft(2+sqrt3right)}tag{3k}
end{align}
$$
Explanation:
$text{(3a)}$: apply $(1)$ and $(2)$
$text{(3b)}$: substitute $amapstosec(a)$
$text{(3c)}$: write $cos(x)$ as exponentials
$text{(3d)}$: expand $left(e^{ix}+e^{-ix}right)^{-1}$ as a power series
$text{(3e)}$: substitute $amapsto a/(2k+1)$
$text{(3f)}$: integrate
$text{(3g)}$: recognize the series for $arctan(x)=frac1{2i}logleft(frac{1+ix}{1-ix}right)$
$text{(3h)}$: evaluate the exponentials
$text{(3i)}$: separate the real and imaginary parts
$text{(3j)}$: rewrite the sum
$text{(3k)}$: $sum_{kinmathbb{Z}}frac{(-1)^k}{(k+x)^2}=pi^2cot(pi x)csc(pi x)$
$endgroup$
$begingroup$
Seems like there should be a^2
in the denominator of the sum of the explanation (3k)
$endgroup$
– Kemono Chen
Jan 24 at 9:03
$begingroup$
@KemonoChen: Indeed. I put the parentheses there because I meant to square the denominator. Thanks. While it's true that we can just take the real part of the right side since the quantity is real, I wanted to make sure I hadn't made a mistake and verify that the imaginary part was $0$.
$endgroup$
– robjohn♦
Jan 24 at 9:25
add a comment |
$begingroup$
This is not an answer.
Your premonition seems to be good. Using another CAS,
$$2int_0^inftyfrac{xcosh( x)}{3+cosh^2(x)},dx=-frac{pi}{4} log left(7-4 sqrt{3}right)-i left(text{Li}_2left(-i left(-2+sqrt{3}right)right)-text{Li}_2left(i
left(-2+sqrt{3}right)right)right)$$ Now, ???
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082875%2fevaluating-int-0-pi-2-operatornamearcsinh2-tan-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I will begin with the same approach as in @DavidG's answer, but will settle in a different argument. Let
$$ J(t) = int_{0}^{infty} frac{operatorname{arsinh}(tx)}{1+x^2} , mathrm{d}x. $$
Our goal is to compute $J(2)$ using Feynman's trick. Differentiating $J(t)$ and substituting $x=sqrt{u^{-2}-1}$, we obtain
begin{align*}
J'(t)
= int_{0}^{infty} frac{x}{(1+x^2)sqrt{1+t^2x^2}} , mathrm{d}x
= int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}u.
end{align*}
So it follows that
begin{align*}
J(2)
&= int_{0}^{2} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t \
&= int_{0}^{1} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t
+ int_{1}^{2} int_{0}^{1} frac{1}{sqrt{1 + (t^2-1)(1-u^2)}} , mathrm{d}umathrm{d}t.
end{align*}
The inner integral is easily computed, yielding
begin{align*}
J(2)
&= int_{0}^{1} frac{operatorname{artanh}left( sqrt{1 - t^2} right)}{sqrt{1 - t^2}} , mathrm{d}t
+ int_{1}^{2} frac{arctanleft(sqrt{t^2-1}right)}{sqrt{t^2 - 1}} , mathrm{d}t.
end{align*}
Now we substitute $t = operatorname{sech} varphi$ for the first integral and $t = sec theta$ for the second integral. This yields
begin{align*}
J(2)
&= int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
+ int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta.
end{align*}
These integrals can be computed as follows:
Using $ operatorname{sech}varphi = frac{2e^{-varphi}}{1 + e^{-2varphi}} = 2 sum_{n=0}^{infty} (-1)^n e^{-(2n+1)varphi} $, we obtain
$$ int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} (-1)^n int_{0}^{infty} varphi e^{-(2n+1)varphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} frac{(-1)^n}{(2n+1)^2}
= 2G. $$
Taking integration by parts,
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= left[ - theta log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) right]_{0}^{frac{pi}{3}} + int_{0}^{frac{pi}{3}} log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) , mathrm{d}theta \
&= frac{pi}{3} log left( 2 + sqrt{3} right) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} log left( tan theta right) , mathrm{d}theta.
end{align*}
This can be computed by using the Fourier series $log left( tan theta right) = - 2 sum_{n=0}^{infty} frac{cos(4n+2)theta}{2n+1} $ to yield
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= frac{pi}{3} log left( 2 + sqrt{3} right) - 2 sum_{n=0}^{infty} frac{sinleft( frac{pi}{2} (2n+1) right) - sinleft( frac{pi}{6} (2n+1) right)}{(2n+1)^2} \
&= frac{pi}{3} log left( 2 + sqrt{3} right) - frac{2}{3}G.
end{align*}
Combining two result, we obtain the desired answer.
$endgroup$
1
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
add a comment |
$begingroup$
I will begin with the same approach as in @DavidG's answer, but will settle in a different argument. Let
$$ J(t) = int_{0}^{infty} frac{operatorname{arsinh}(tx)}{1+x^2} , mathrm{d}x. $$
Our goal is to compute $J(2)$ using Feynman's trick. Differentiating $J(t)$ and substituting $x=sqrt{u^{-2}-1}$, we obtain
begin{align*}
J'(t)
= int_{0}^{infty} frac{x}{(1+x^2)sqrt{1+t^2x^2}} , mathrm{d}x
= int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}u.
end{align*}
So it follows that
begin{align*}
J(2)
&= int_{0}^{2} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t \
&= int_{0}^{1} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t
+ int_{1}^{2} int_{0}^{1} frac{1}{sqrt{1 + (t^2-1)(1-u^2)}} , mathrm{d}umathrm{d}t.
end{align*}
The inner integral is easily computed, yielding
begin{align*}
J(2)
&= int_{0}^{1} frac{operatorname{artanh}left( sqrt{1 - t^2} right)}{sqrt{1 - t^2}} , mathrm{d}t
+ int_{1}^{2} frac{arctanleft(sqrt{t^2-1}right)}{sqrt{t^2 - 1}} , mathrm{d}t.
end{align*}
Now we substitute $t = operatorname{sech} varphi$ for the first integral and $t = sec theta$ for the second integral. This yields
begin{align*}
J(2)
&= int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
+ int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta.
end{align*}
These integrals can be computed as follows:
Using $ operatorname{sech}varphi = frac{2e^{-varphi}}{1 + e^{-2varphi}} = 2 sum_{n=0}^{infty} (-1)^n e^{-(2n+1)varphi} $, we obtain
$$ int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} (-1)^n int_{0}^{infty} varphi e^{-(2n+1)varphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} frac{(-1)^n}{(2n+1)^2}
= 2G. $$
Taking integration by parts,
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= left[ - theta log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) right]_{0}^{frac{pi}{3}} + int_{0}^{frac{pi}{3}} log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) , mathrm{d}theta \
&= frac{pi}{3} log left( 2 + sqrt{3} right) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} log left( tan theta right) , mathrm{d}theta.
end{align*}
This can be computed by using the Fourier series $log left( tan theta right) = - 2 sum_{n=0}^{infty} frac{cos(4n+2)theta}{2n+1} $ to yield
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= frac{pi}{3} log left( 2 + sqrt{3} right) - 2 sum_{n=0}^{infty} frac{sinleft( frac{pi}{2} (2n+1) right) - sinleft( frac{pi}{6} (2n+1) right)}{(2n+1)^2} \
&= frac{pi}{3} log left( 2 + sqrt{3} right) - frac{2}{3}G.
end{align*}
Combining two result, we obtain the desired answer.
$endgroup$
1
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
add a comment |
$begingroup$
I will begin with the same approach as in @DavidG's answer, but will settle in a different argument. Let
$$ J(t) = int_{0}^{infty} frac{operatorname{arsinh}(tx)}{1+x^2} , mathrm{d}x. $$
Our goal is to compute $J(2)$ using Feynman's trick. Differentiating $J(t)$ and substituting $x=sqrt{u^{-2}-1}$, we obtain
begin{align*}
J'(t)
= int_{0}^{infty} frac{x}{(1+x^2)sqrt{1+t^2x^2}} , mathrm{d}x
= int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}u.
end{align*}
So it follows that
begin{align*}
J(2)
&= int_{0}^{2} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t \
&= int_{0}^{1} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t
+ int_{1}^{2} int_{0}^{1} frac{1}{sqrt{1 + (t^2-1)(1-u^2)}} , mathrm{d}umathrm{d}t.
end{align*}
The inner integral is easily computed, yielding
begin{align*}
J(2)
&= int_{0}^{1} frac{operatorname{artanh}left( sqrt{1 - t^2} right)}{sqrt{1 - t^2}} , mathrm{d}t
+ int_{1}^{2} frac{arctanleft(sqrt{t^2-1}right)}{sqrt{t^2 - 1}} , mathrm{d}t.
end{align*}
Now we substitute $t = operatorname{sech} varphi$ for the first integral and $t = sec theta$ for the second integral. This yields
begin{align*}
J(2)
&= int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
+ int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta.
end{align*}
These integrals can be computed as follows:
Using $ operatorname{sech}varphi = frac{2e^{-varphi}}{1 + e^{-2varphi}} = 2 sum_{n=0}^{infty} (-1)^n e^{-(2n+1)varphi} $, we obtain
$$ int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} (-1)^n int_{0}^{infty} varphi e^{-(2n+1)varphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} frac{(-1)^n}{(2n+1)^2}
= 2G. $$
Taking integration by parts,
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= left[ - theta log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) right]_{0}^{frac{pi}{3}} + int_{0}^{frac{pi}{3}} log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) , mathrm{d}theta \
&= frac{pi}{3} log left( 2 + sqrt{3} right) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} log left( tan theta right) , mathrm{d}theta.
end{align*}
This can be computed by using the Fourier series $log left( tan theta right) = - 2 sum_{n=0}^{infty} frac{cos(4n+2)theta}{2n+1} $ to yield
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= frac{pi}{3} log left( 2 + sqrt{3} right) - 2 sum_{n=0}^{infty} frac{sinleft( frac{pi}{2} (2n+1) right) - sinleft( frac{pi}{6} (2n+1) right)}{(2n+1)^2} \
&= frac{pi}{3} log left( 2 + sqrt{3} right) - frac{2}{3}G.
end{align*}
Combining two result, we obtain the desired answer.
$endgroup$
I will begin with the same approach as in @DavidG's answer, but will settle in a different argument. Let
$$ J(t) = int_{0}^{infty} frac{operatorname{arsinh}(tx)}{1+x^2} , mathrm{d}x. $$
Our goal is to compute $J(2)$ using Feynman's trick. Differentiating $J(t)$ and substituting $x=sqrt{u^{-2}-1}$, we obtain
begin{align*}
J'(t)
= int_{0}^{infty} frac{x}{(1+x^2)sqrt{1+t^2x^2}} , mathrm{d}x
= int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}u.
end{align*}
So it follows that
begin{align*}
J(2)
&= int_{0}^{2} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t \
&= int_{0}^{1} int_{0}^{1} frac{1}{sqrt{1 - (1-t^2)(1-u^2)}} , mathrm{d}umathrm{d}t
+ int_{1}^{2} int_{0}^{1} frac{1}{sqrt{1 + (t^2-1)(1-u^2)}} , mathrm{d}umathrm{d}t.
end{align*}
The inner integral is easily computed, yielding
begin{align*}
J(2)
&= int_{0}^{1} frac{operatorname{artanh}left( sqrt{1 - t^2} right)}{sqrt{1 - t^2}} , mathrm{d}t
+ int_{1}^{2} frac{arctanleft(sqrt{t^2-1}right)}{sqrt{t^2 - 1}} , mathrm{d}t.
end{align*}
Now we substitute $t = operatorname{sech} varphi$ for the first integral and $t = sec theta$ for the second integral. This yields
begin{align*}
J(2)
&= int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
+ int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta.
end{align*}
These integrals can be computed as follows:
Using $ operatorname{sech}varphi = frac{2e^{-varphi}}{1 + e^{-2varphi}} = 2 sum_{n=0}^{infty} (-1)^n e^{-(2n+1)varphi} $, we obtain
$$ int_{0}^{infty} frac{varphi}{coshvarphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} (-1)^n int_{0}^{infty} varphi e^{-(2n+1)varphi} , mathrm{d}varphi
= 2 sum_{n=0}^{infty} frac{(-1)^n}{(2n+1)^2}
= 2G. $$
Taking integration by parts,
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= left[ - theta log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) right]_{0}^{frac{pi}{3}} + int_{0}^{frac{pi}{3}} log left( tan left( frac{pi}{4} - frac{theta}{2} right) right) , mathrm{d}theta \
&= frac{pi}{3} log left( 2 + sqrt{3} right) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} log left( tan theta right) , mathrm{d}theta.
end{align*}
This can be computed by using the Fourier series $log left( tan theta right) = - 2 sum_{n=0}^{infty} frac{cos(4n+2)theta}{2n+1} $ to yield
begin{align*}
int_{0}^{frac{pi}{3}} frac{theta}{costheta} , mathrm{d}theta
&= frac{pi}{3} log left( 2 + sqrt{3} right) - 2 sum_{n=0}^{infty} frac{sinleft( frac{pi}{2} (2n+1) right) - sinleft( frac{pi}{6} (2n+1) right)}{(2n+1)^2} \
&= frac{pi}{3} log left( 2 + sqrt{3} right) - frac{2}{3}G.
end{align*}
Combining two result, we obtain the desired answer.
answered Jan 22 at 11:24
Sangchul LeeSangchul Lee
95.5k12171279
95.5k12171279
1
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
add a comment |
1
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
1
1
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
add a comment |
$begingroup$
On the path of Kemono Chen...
begin{align}J&=int_0^{pi/2}operatorname{arcsinh}(2tan x)dxend{align}
Perform the change of variable $y=operatorname{arcsinh}(2tan x)$,
begin{align}J&=int_0^{+infty}frac{2xcosh x}{4+sinh^2 x},dx\
&=int_0^{+infty}frac{4xleft(text{e}^{x}+text{e}^{-x}right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
&=int_0^{+infty}frac{4xtext{e}^{-x}left(text{e}^{2x}+1right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
end{align}
Perform the change of variable $y=text{e}^{-x}$,
begin{align}J&=-int_0^1 frac{4ln xleft(1+frac{1}{x^2}right)}{14+x^2+frac{1}{x^2}}\
&=-int_0^1 frac{4ln xleft(1+x^2right)}{x^4+14x^2+1}\
&=left[-arctanleft(frac{4x}{1-x^2}right)ln xright]_0^1+int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(left(2+sqrt{3}right)xright)}{x},dx+int_0^1 frac{arctanleft(left(2-sqrt{3}right)xright)}{x},dx\
end{align}
In the first integral perform the change of variable $y=left(2+sqrt{3}right)x$,
In the second integral perform the change of variable $y=left(2-sqrt{3}right)x$,
begin{align}J&=int_0^{2+sqrt{3}}frac{arctan x}{x},dx+int_0^{2-sqrt{3}}frac{arctan x}{x},dx\
&=Big[arctan xln xBig]_0^{2+sqrt{3}}-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+Big[arctan xln xBig]_0^{2-sqrt{3}}-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{5pi}{12}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+frac{pi}{12}lnleft(2-sqrt{3}right)-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx
end{align}
In the first integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_{2-sqrt{3}}^{+infty}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_0^{+infty}frac{ln x}{1+x^2},dx-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
end{align}
Perform the change of variable $y=tan x$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{frac{pi}{12}}lnleft(tan xright),dx\
end{align}
It is well known that,
begin{align}
int_0^{frac{pi}{12}}lnleft(tan xright),dx=-frac{2}{3}text{G}
end{align}
(see: Integral: $int_0^{pi/12} ln(tan x),dx$ )
Thus,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2times -frac{2}{3}text{G}\
&=boxed{frac{pi}{3}lnleft(2+sqrt{3}right)+frac{4}{3}text{G}}
end{align}
NB:
Observe that,
begin{align}2-sqrt{3}&=frac{1}{2+sqrt{3}}\
lnleft(2-sqrt{3}right)&=-lnleft(2+sqrt{3}right)\
int_0^infty frac{ln x}{1+x^2},dx&=0
end{align}
(perform the change of variable $y=dfrac{1}{x}$ )
$endgroup$
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
How did you do $$intarctanfrac{4x}{1-x^2}frac{mathrm dx}{x}=intarctan(2+sqrt3)xfrac{mathrm dx}{x}+intarctan(2-sqrt3)xfrac{mathrm dx}{x}$$
$endgroup$
– clathratus
Jan 22 at 16:10
1
$begingroup$
@Clathratus: if $ab<1$then begin{align}arctan a+arctan b=arctanleft(frac{a+b}{1-ab}right)end{align}
$endgroup$
– FDP
Jan 22 at 16:23
add a comment |
$begingroup$
On the path of Kemono Chen...
begin{align}J&=int_0^{pi/2}operatorname{arcsinh}(2tan x)dxend{align}
Perform the change of variable $y=operatorname{arcsinh}(2tan x)$,
begin{align}J&=int_0^{+infty}frac{2xcosh x}{4+sinh^2 x},dx\
&=int_0^{+infty}frac{4xleft(text{e}^{x}+text{e}^{-x}right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
&=int_0^{+infty}frac{4xtext{e}^{-x}left(text{e}^{2x}+1right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
end{align}
Perform the change of variable $y=text{e}^{-x}$,
begin{align}J&=-int_0^1 frac{4ln xleft(1+frac{1}{x^2}right)}{14+x^2+frac{1}{x^2}}\
&=-int_0^1 frac{4ln xleft(1+x^2right)}{x^4+14x^2+1}\
&=left[-arctanleft(frac{4x}{1-x^2}right)ln xright]_0^1+int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(left(2+sqrt{3}right)xright)}{x},dx+int_0^1 frac{arctanleft(left(2-sqrt{3}right)xright)}{x},dx\
end{align}
In the first integral perform the change of variable $y=left(2+sqrt{3}right)x$,
In the second integral perform the change of variable $y=left(2-sqrt{3}right)x$,
begin{align}J&=int_0^{2+sqrt{3}}frac{arctan x}{x},dx+int_0^{2-sqrt{3}}frac{arctan x}{x},dx\
&=Big[arctan xln xBig]_0^{2+sqrt{3}}-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+Big[arctan xln xBig]_0^{2-sqrt{3}}-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{5pi}{12}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+frac{pi}{12}lnleft(2-sqrt{3}right)-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx
end{align}
In the first integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_{2-sqrt{3}}^{+infty}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_0^{+infty}frac{ln x}{1+x^2},dx-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
end{align}
Perform the change of variable $y=tan x$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{frac{pi}{12}}lnleft(tan xright),dx\
end{align}
It is well known that,
begin{align}
int_0^{frac{pi}{12}}lnleft(tan xright),dx=-frac{2}{3}text{G}
end{align}
(see: Integral: $int_0^{pi/12} ln(tan x),dx$ )
Thus,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2times -frac{2}{3}text{G}\
&=boxed{frac{pi}{3}lnleft(2+sqrt{3}right)+frac{4}{3}text{G}}
end{align}
NB:
Observe that,
begin{align}2-sqrt{3}&=frac{1}{2+sqrt{3}}\
lnleft(2-sqrt{3}right)&=-lnleft(2+sqrt{3}right)\
int_0^infty frac{ln x}{1+x^2},dx&=0
end{align}
(perform the change of variable $y=dfrac{1}{x}$ )
$endgroup$
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
How did you do $$intarctanfrac{4x}{1-x^2}frac{mathrm dx}{x}=intarctan(2+sqrt3)xfrac{mathrm dx}{x}+intarctan(2-sqrt3)xfrac{mathrm dx}{x}$$
$endgroup$
– clathratus
Jan 22 at 16:10
1
$begingroup$
@Clathratus: if $ab<1$then begin{align}arctan a+arctan b=arctanleft(frac{a+b}{1-ab}right)end{align}
$endgroup$
– FDP
Jan 22 at 16:23
add a comment |
$begingroup$
On the path of Kemono Chen...
begin{align}J&=int_0^{pi/2}operatorname{arcsinh}(2tan x)dxend{align}
Perform the change of variable $y=operatorname{arcsinh}(2tan x)$,
begin{align}J&=int_0^{+infty}frac{2xcosh x}{4+sinh^2 x},dx\
&=int_0^{+infty}frac{4xleft(text{e}^{x}+text{e}^{-x}right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
&=int_0^{+infty}frac{4xtext{e}^{-x}left(text{e}^{2x}+1right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
end{align}
Perform the change of variable $y=text{e}^{-x}$,
begin{align}J&=-int_0^1 frac{4ln xleft(1+frac{1}{x^2}right)}{14+x^2+frac{1}{x^2}}\
&=-int_0^1 frac{4ln xleft(1+x^2right)}{x^4+14x^2+1}\
&=left[-arctanleft(frac{4x}{1-x^2}right)ln xright]_0^1+int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(left(2+sqrt{3}right)xright)}{x},dx+int_0^1 frac{arctanleft(left(2-sqrt{3}right)xright)}{x},dx\
end{align}
In the first integral perform the change of variable $y=left(2+sqrt{3}right)x$,
In the second integral perform the change of variable $y=left(2-sqrt{3}right)x$,
begin{align}J&=int_0^{2+sqrt{3}}frac{arctan x}{x},dx+int_0^{2-sqrt{3}}frac{arctan x}{x},dx\
&=Big[arctan xln xBig]_0^{2+sqrt{3}}-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+Big[arctan xln xBig]_0^{2-sqrt{3}}-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{5pi}{12}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+frac{pi}{12}lnleft(2-sqrt{3}right)-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx
end{align}
In the first integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_{2-sqrt{3}}^{+infty}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_0^{+infty}frac{ln x}{1+x^2},dx-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
end{align}
Perform the change of variable $y=tan x$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{frac{pi}{12}}lnleft(tan xright),dx\
end{align}
It is well known that,
begin{align}
int_0^{frac{pi}{12}}lnleft(tan xright),dx=-frac{2}{3}text{G}
end{align}
(see: Integral: $int_0^{pi/12} ln(tan x),dx$ )
Thus,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2times -frac{2}{3}text{G}\
&=boxed{frac{pi}{3}lnleft(2+sqrt{3}right)+frac{4}{3}text{G}}
end{align}
NB:
Observe that,
begin{align}2-sqrt{3}&=frac{1}{2+sqrt{3}}\
lnleft(2-sqrt{3}right)&=-lnleft(2+sqrt{3}right)\
int_0^infty frac{ln x}{1+x^2},dx&=0
end{align}
(perform the change of variable $y=dfrac{1}{x}$ )
$endgroup$
On the path of Kemono Chen...
begin{align}J&=int_0^{pi/2}operatorname{arcsinh}(2tan x)dxend{align}
Perform the change of variable $y=operatorname{arcsinh}(2tan x)$,
begin{align}J&=int_0^{+infty}frac{2xcosh x}{4+sinh^2 x},dx\
&=int_0^{+infty}frac{4xleft(text{e}^{x}+text{e}^{-x}right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
&=int_0^{+infty}frac{4xtext{e}^{-x}left(text{e}^{2x}+1right)}{14+text{e}^{2x}+text{e}^{-2x}},dx\
end{align}
Perform the change of variable $y=text{e}^{-x}$,
begin{align}J&=-int_0^1 frac{4ln xleft(1+frac{1}{x^2}right)}{14+x^2+frac{1}{x^2}}\
&=-int_0^1 frac{4ln xleft(1+x^2right)}{x^4+14x^2+1}\
&=left[-arctanleft(frac{4x}{1-x^2}right)ln xright]_0^1+int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(frac{4x}{1-x^2}right)}{x},dx\
&=int_0^1 frac{arctanleft(left(2+sqrt{3}right)xright)}{x},dx+int_0^1 frac{arctanleft(left(2-sqrt{3}right)xright)}{x},dx\
end{align}
In the first integral perform the change of variable $y=left(2+sqrt{3}right)x$,
In the second integral perform the change of variable $y=left(2-sqrt{3}right)x$,
begin{align}J&=int_0^{2+sqrt{3}}frac{arctan x}{x},dx+int_0^{2-sqrt{3}}frac{arctan x}{x},dx\
&=Big[arctan xln xBig]_0^{2+sqrt{3}}-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+Big[arctan xln xBig]_0^{2-sqrt{3}}-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{5pi}{12}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx+frac{pi}{12}lnleft(2-sqrt{3}right)-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-int_0^{2+sqrt{3}}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx
end{align}
In the first integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_{2-sqrt{3}}^{+infty}frac{ln x}{1+x^2},dx-int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)+int_0^{+infty}frac{ln x}{1+x^2},dx-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{2-sqrt{3}}frac{ln x}{1+x^2},dx\
end{align}
Perform the change of variable $y=tan x$,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2int_0^{frac{pi}{12}}lnleft(tan xright),dx\
end{align}
It is well known that,
begin{align}
int_0^{frac{pi}{12}}lnleft(tan xright),dx=-frac{2}{3}text{G}
end{align}
(see: Integral: $int_0^{pi/12} ln(tan x),dx$ )
Thus,
begin{align}J&=frac{pi}{3}lnleft(2+sqrt{3}right)-2times -frac{2}{3}text{G}\
&=boxed{frac{pi}{3}lnleft(2+sqrt{3}right)+frac{4}{3}text{G}}
end{align}
NB:
Observe that,
begin{align}2-sqrt{3}&=frac{1}{2+sqrt{3}}\
lnleft(2-sqrt{3}right)&=-lnleft(2+sqrt{3}right)\
int_0^infty frac{ln x}{1+x^2},dx&=0
end{align}
(perform the change of variable $y=dfrac{1}{x}$ )
edited Jan 22 at 13:40
answered Jan 22 at 13:35
FDPFDP
6,02211829
6,02211829
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
How did you do $$intarctanfrac{4x}{1-x^2}frac{mathrm dx}{x}=intarctan(2+sqrt3)xfrac{mathrm dx}{x}+intarctan(2-sqrt3)xfrac{mathrm dx}{x}$$
$endgroup$
– clathratus
Jan 22 at 16:10
1
$begingroup$
@Clathratus: if $ab<1$then begin{align}arctan a+arctan b=arctanleft(frac{a+b}{1-ab}right)end{align}
$endgroup$
– FDP
Jan 22 at 16:23
add a comment |
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
How did you do $$intarctanfrac{4x}{1-x^2}frac{mathrm dx}{x}=intarctan(2+sqrt3)xfrac{mathrm dx}{x}+intarctan(2-sqrt3)xfrac{mathrm dx}{x}$$
$endgroup$
– clathratus
Jan 22 at 16:10
1
$begingroup$
@Clathratus: if $ab<1$then begin{align}arctan a+arctan b=arctanleft(frac{a+b}{1-ab}right)end{align}
$endgroup$
– FDP
Jan 22 at 16:23
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
This is beauty !
$endgroup$
– Claude Leibovici
Jan 22 at 16:10
$begingroup$
How did you do $$intarctanfrac{4x}{1-x^2}frac{mathrm dx}{x}=intarctan(2+sqrt3)xfrac{mathrm dx}{x}+intarctan(2-sqrt3)xfrac{mathrm dx}{x}$$
$endgroup$
– clathratus
Jan 22 at 16:10
$begingroup$
How did you do $$intarctanfrac{4x}{1-x^2}frac{mathrm dx}{x}=intarctan(2+sqrt3)xfrac{mathrm dx}{x}+intarctan(2-sqrt3)xfrac{mathrm dx}{x}$$
$endgroup$
– clathratus
Jan 22 at 16:10
1
1
$begingroup$
@Clathratus: if $ab<1$then begin{align}arctan a+arctan b=arctanleft(frac{a+b}{1-ab}right)end{align}
$endgroup$
– FDP
Jan 22 at 16:23
$begingroup$
@Clathratus: if $ab<1$then begin{align}arctan a+arctan b=arctanleft(frac{a+b}{1-ab}right)end{align}
$endgroup$
– FDP
Jan 22 at 16:23
add a comment |
$begingroup$
Here is another variation along a theme which like @DavidG approach uses Feynman's trick of differentiating under the integral sign.
Let
$$I(a) = int_0^{frac{pi}{2}} operatorname{arcsinh} (a tan x) , dx, qquad a > 1.$$
We are required to find $I(2)$. We start by finding $I(1)$ first, which will be needed later on.
For $a = 1$ we have
begin{align}
I(1) &= int_0^{frac{pi}{2}} operatorname{arcsinh} (tan x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1 + sin x}{cos x} right ) , dx\
&= int_0^{frac{pi}{2}} ln (1 + sin x) , dx - int_0^{frac{pi}{2}} ln (cos x) , dx.
end{align}
Now the first of these integrals can be found, for example, by rewriting it as
begin{align}
int_0^{frac{pi}{2}} ln (1 + sin x) , dx &= int_0^{frac{pi}{2}} ln (1 + cos x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1}{2} cos^2 frac{x}{2} right ) , dx\
&= frac{pi}{2} ln 2 + 4 int_0^{frac{pi}{4}} ln (cos x) , dx
end{align}
and then employing the Fourier series representation for $ln (cos x)$ found here. The final result is
$$int_0^{frac{pi}{2}} ln (1 + sin x) , dx = 2 mathbf{G} - frac{pi}{2} ln 2.$$
Here $mathbf{G}$ is Catalan's constant.
The second of the integrals is very well known. Here
$$int_0^{frac{pi}{2}} ln (cos x) , dx = - frac{pi}{2} ln 2.$$
Thus $I(1) = 2 mathbf{G}$.
Moving to the main event, by differentiating under the integral sign with respect to $a$ we have
begin{align}
I'(a) &= int_0^{frac{pi}{2}} frac{tan x}{sqrt{a^2 tan^2 x + 1}} , dx\
&= int_0^{frac{pi}{2}} frac{sin x}{sqrt{a^2 - (a^2 - 1) cos^2 x}} , dx.
end{align}
Observe the term $(a^2 - 1)$ is positive since $a > 1$. Letting $u = cos x$ one has
$$I'(a) = int_0^1 frac{du}{sqrt{a^2 - (a^2 - 1) u^2}} = frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ).$$
As we require $I(2)$ observe that
$$I(2) - I(1) = int_1^2 I'(a) , da.$$
Thus
$$I(2) = 2 mathbf{G} + int_1^2 frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ) , da.$$
Integrating by parts leads to
$$I(2) = 2 mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_1^2 frac{cosh^{-1} a}{a sqrt{a^2 - 1}} , da.$$
Now let $a = cosh t$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_0^{ln(2 + sqrt{3})} frac{t}{cosh t} , dt.$$
Then let $t = ln y$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_1^{2 + sqrt{3}} frac{ln y}{1 + y^2} , dy.$$
Now let $y = tan theta$. Then we have
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_{frac{pi}{4}}^{frac{5pi}{12}} ln (tan theta) , dtheta.$$
Finally, enforcing a substitution of $theta mapsto dfrac{pi}{2} - theta$ leads to
begin{align}
I(2) &= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} ln (tan theta) , dtheta\
&= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2int_0^{frac{pi}{4}} ln (tan theta) , dtheta - 2 int_0^{frac{pi}{12}} ln (tan theta) , dtheta.
end{align}
For the first of the integrals we have
$$int_0^{frac{pi}{4}} ln (tan x) , dx = -mathbf{G}.$$
While for the second of the integrals we have
$$int_0^{frac{pi}{12}} ln (tan x) , dx = -frac{2}{3} mathbf{G}.$$
So finally
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2mathbf{G} + frac{4}{3} mathbf{G},$$
or
$$int_0^{frac{pi}{2}} operatorname{arcsinh} (2 tan x) , dx = frac{pi}{3} ln (2 + sqrt{3}) + frac{4}{3} mathbf{G},$$
as announced.
$endgroup$
1
$begingroup$
begin{align}A&=int_0^{frac{pi}{4}}ln(cos x),dx\ B&=int_0^{frac{pi}{4}}ln(sin x),dx\ B-A&=int_0^{frac{pi}{4}}ln(tan x),dx\ &=-text{G}\ A+B&=int_0^{frac{pi}{4}}ln(sin xcos x),dx\ &=int_0^{frac{pi}{4}}lnleft(frac{sin(2x)}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(frac{sin x}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(sin xright),dx-frac{pi}{4}ln 2\ &=-frac{1}{2}piln 2\ A&=frac{1}{2}left(A+B-left(B-Aright)right)\ &=frac{1}{2}text{G}-frac{1}{4}piln 2 end{align}
$endgroup$
– FDP
Jan 23 at 13:44
$begingroup$
Yes, very nice.
$endgroup$
– omegadot
Jan 24 at 1:29
add a comment |
$begingroup$
Here is another variation along a theme which like @DavidG approach uses Feynman's trick of differentiating under the integral sign.
Let
$$I(a) = int_0^{frac{pi}{2}} operatorname{arcsinh} (a tan x) , dx, qquad a > 1.$$
We are required to find $I(2)$. We start by finding $I(1)$ first, which will be needed later on.
For $a = 1$ we have
begin{align}
I(1) &= int_0^{frac{pi}{2}} operatorname{arcsinh} (tan x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1 + sin x}{cos x} right ) , dx\
&= int_0^{frac{pi}{2}} ln (1 + sin x) , dx - int_0^{frac{pi}{2}} ln (cos x) , dx.
end{align}
Now the first of these integrals can be found, for example, by rewriting it as
begin{align}
int_0^{frac{pi}{2}} ln (1 + sin x) , dx &= int_0^{frac{pi}{2}} ln (1 + cos x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1}{2} cos^2 frac{x}{2} right ) , dx\
&= frac{pi}{2} ln 2 + 4 int_0^{frac{pi}{4}} ln (cos x) , dx
end{align}
and then employing the Fourier series representation for $ln (cos x)$ found here. The final result is
$$int_0^{frac{pi}{2}} ln (1 + sin x) , dx = 2 mathbf{G} - frac{pi}{2} ln 2.$$
Here $mathbf{G}$ is Catalan's constant.
The second of the integrals is very well known. Here
$$int_0^{frac{pi}{2}} ln (cos x) , dx = - frac{pi}{2} ln 2.$$
Thus $I(1) = 2 mathbf{G}$.
Moving to the main event, by differentiating under the integral sign with respect to $a$ we have
begin{align}
I'(a) &= int_0^{frac{pi}{2}} frac{tan x}{sqrt{a^2 tan^2 x + 1}} , dx\
&= int_0^{frac{pi}{2}} frac{sin x}{sqrt{a^2 - (a^2 - 1) cos^2 x}} , dx.
end{align}
Observe the term $(a^2 - 1)$ is positive since $a > 1$. Letting $u = cos x$ one has
$$I'(a) = int_0^1 frac{du}{sqrt{a^2 - (a^2 - 1) u^2}} = frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ).$$
As we require $I(2)$ observe that
$$I(2) - I(1) = int_1^2 I'(a) , da.$$
Thus
$$I(2) = 2 mathbf{G} + int_1^2 frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ) , da.$$
Integrating by parts leads to
$$I(2) = 2 mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_1^2 frac{cosh^{-1} a}{a sqrt{a^2 - 1}} , da.$$
Now let $a = cosh t$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_0^{ln(2 + sqrt{3})} frac{t}{cosh t} , dt.$$
Then let $t = ln y$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_1^{2 + sqrt{3}} frac{ln y}{1 + y^2} , dy.$$
Now let $y = tan theta$. Then we have
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_{frac{pi}{4}}^{frac{5pi}{12}} ln (tan theta) , dtheta.$$
Finally, enforcing a substitution of $theta mapsto dfrac{pi}{2} - theta$ leads to
begin{align}
I(2) &= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} ln (tan theta) , dtheta\
&= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2int_0^{frac{pi}{4}} ln (tan theta) , dtheta - 2 int_0^{frac{pi}{12}} ln (tan theta) , dtheta.
end{align}
For the first of the integrals we have
$$int_0^{frac{pi}{4}} ln (tan x) , dx = -mathbf{G}.$$
While for the second of the integrals we have
$$int_0^{frac{pi}{12}} ln (tan x) , dx = -frac{2}{3} mathbf{G}.$$
So finally
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2mathbf{G} + frac{4}{3} mathbf{G},$$
or
$$int_0^{frac{pi}{2}} operatorname{arcsinh} (2 tan x) , dx = frac{pi}{3} ln (2 + sqrt{3}) + frac{4}{3} mathbf{G},$$
as announced.
$endgroup$
1
$begingroup$
begin{align}A&=int_0^{frac{pi}{4}}ln(cos x),dx\ B&=int_0^{frac{pi}{4}}ln(sin x),dx\ B-A&=int_0^{frac{pi}{4}}ln(tan x),dx\ &=-text{G}\ A+B&=int_0^{frac{pi}{4}}ln(sin xcos x),dx\ &=int_0^{frac{pi}{4}}lnleft(frac{sin(2x)}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(frac{sin x}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(sin xright),dx-frac{pi}{4}ln 2\ &=-frac{1}{2}piln 2\ A&=frac{1}{2}left(A+B-left(B-Aright)right)\ &=frac{1}{2}text{G}-frac{1}{4}piln 2 end{align}
$endgroup$
– FDP
Jan 23 at 13:44
$begingroup$
Yes, very nice.
$endgroup$
– omegadot
Jan 24 at 1:29
add a comment |
$begingroup$
Here is another variation along a theme which like @DavidG approach uses Feynman's trick of differentiating under the integral sign.
Let
$$I(a) = int_0^{frac{pi}{2}} operatorname{arcsinh} (a tan x) , dx, qquad a > 1.$$
We are required to find $I(2)$. We start by finding $I(1)$ first, which will be needed later on.
For $a = 1$ we have
begin{align}
I(1) &= int_0^{frac{pi}{2}} operatorname{arcsinh} (tan x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1 + sin x}{cos x} right ) , dx\
&= int_0^{frac{pi}{2}} ln (1 + sin x) , dx - int_0^{frac{pi}{2}} ln (cos x) , dx.
end{align}
Now the first of these integrals can be found, for example, by rewriting it as
begin{align}
int_0^{frac{pi}{2}} ln (1 + sin x) , dx &= int_0^{frac{pi}{2}} ln (1 + cos x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1}{2} cos^2 frac{x}{2} right ) , dx\
&= frac{pi}{2} ln 2 + 4 int_0^{frac{pi}{4}} ln (cos x) , dx
end{align}
and then employing the Fourier series representation for $ln (cos x)$ found here. The final result is
$$int_0^{frac{pi}{2}} ln (1 + sin x) , dx = 2 mathbf{G} - frac{pi}{2} ln 2.$$
Here $mathbf{G}$ is Catalan's constant.
The second of the integrals is very well known. Here
$$int_0^{frac{pi}{2}} ln (cos x) , dx = - frac{pi}{2} ln 2.$$
Thus $I(1) = 2 mathbf{G}$.
Moving to the main event, by differentiating under the integral sign with respect to $a$ we have
begin{align}
I'(a) &= int_0^{frac{pi}{2}} frac{tan x}{sqrt{a^2 tan^2 x + 1}} , dx\
&= int_0^{frac{pi}{2}} frac{sin x}{sqrt{a^2 - (a^2 - 1) cos^2 x}} , dx.
end{align}
Observe the term $(a^2 - 1)$ is positive since $a > 1$. Letting $u = cos x$ one has
$$I'(a) = int_0^1 frac{du}{sqrt{a^2 - (a^2 - 1) u^2}} = frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ).$$
As we require $I(2)$ observe that
$$I(2) - I(1) = int_1^2 I'(a) , da.$$
Thus
$$I(2) = 2 mathbf{G} + int_1^2 frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ) , da.$$
Integrating by parts leads to
$$I(2) = 2 mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_1^2 frac{cosh^{-1} a}{a sqrt{a^2 - 1}} , da.$$
Now let $a = cosh t$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_0^{ln(2 + sqrt{3})} frac{t}{cosh t} , dt.$$
Then let $t = ln y$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_1^{2 + sqrt{3}} frac{ln y}{1 + y^2} , dy.$$
Now let $y = tan theta$. Then we have
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_{frac{pi}{4}}^{frac{5pi}{12}} ln (tan theta) , dtheta.$$
Finally, enforcing a substitution of $theta mapsto dfrac{pi}{2} - theta$ leads to
begin{align}
I(2) &= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} ln (tan theta) , dtheta\
&= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2int_0^{frac{pi}{4}} ln (tan theta) , dtheta - 2 int_0^{frac{pi}{12}} ln (tan theta) , dtheta.
end{align}
For the first of the integrals we have
$$int_0^{frac{pi}{4}} ln (tan x) , dx = -mathbf{G}.$$
While for the second of the integrals we have
$$int_0^{frac{pi}{12}} ln (tan x) , dx = -frac{2}{3} mathbf{G}.$$
So finally
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2mathbf{G} + frac{4}{3} mathbf{G},$$
or
$$int_0^{frac{pi}{2}} operatorname{arcsinh} (2 tan x) , dx = frac{pi}{3} ln (2 + sqrt{3}) + frac{4}{3} mathbf{G},$$
as announced.
$endgroup$
Here is another variation along a theme which like @DavidG approach uses Feynman's trick of differentiating under the integral sign.
Let
$$I(a) = int_0^{frac{pi}{2}} operatorname{arcsinh} (a tan x) , dx, qquad a > 1.$$
We are required to find $I(2)$. We start by finding $I(1)$ first, which will be needed later on.
For $a = 1$ we have
begin{align}
I(1) &= int_0^{frac{pi}{2}} operatorname{arcsinh} (tan x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1 + sin x}{cos x} right ) , dx\
&= int_0^{frac{pi}{2}} ln (1 + sin x) , dx - int_0^{frac{pi}{2}} ln (cos x) , dx.
end{align}
Now the first of these integrals can be found, for example, by rewriting it as
begin{align}
int_0^{frac{pi}{2}} ln (1 + sin x) , dx &= int_0^{frac{pi}{2}} ln (1 + cos x) , dx\
&= int_0^{frac{pi}{2}} ln left (frac{1}{2} cos^2 frac{x}{2} right ) , dx\
&= frac{pi}{2} ln 2 + 4 int_0^{frac{pi}{4}} ln (cos x) , dx
end{align}
and then employing the Fourier series representation for $ln (cos x)$ found here. The final result is
$$int_0^{frac{pi}{2}} ln (1 + sin x) , dx = 2 mathbf{G} - frac{pi}{2} ln 2.$$
Here $mathbf{G}$ is Catalan's constant.
The second of the integrals is very well known. Here
$$int_0^{frac{pi}{2}} ln (cos x) , dx = - frac{pi}{2} ln 2.$$
Thus $I(1) = 2 mathbf{G}$.
Moving to the main event, by differentiating under the integral sign with respect to $a$ we have
begin{align}
I'(a) &= int_0^{frac{pi}{2}} frac{tan x}{sqrt{a^2 tan^2 x + 1}} , dx\
&= int_0^{frac{pi}{2}} frac{sin x}{sqrt{a^2 - (a^2 - 1) cos^2 x}} , dx.
end{align}
Observe the term $(a^2 - 1)$ is positive since $a > 1$. Letting $u = cos x$ one has
$$I'(a) = int_0^1 frac{du}{sqrt{a^2 - (a^2 - 1) u^2}} = frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ).$$
As we require $I(2)$ observe that
$$I(2) - I(1) = int_1^2 I'(a) , da.$$
Thus
$$I(2) = 2 mathbf{G} + int_1^2 frac{1}{sqrt{a^2 - 1}} sin^{-1} left (frac{sqrt{a^2 - 1}}{a} right ) , da.$$
Integrating by parts leads to
$$I(2) = 2 mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_1^2 frac{cosh^{-1} a}{a sqrt{a^2 - 1}} , da.$$
Now let $a = cosh t$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - int_0^{ln(2 + sqrt{3})} frac{t}{cosh t} , dt.$$
Then let $t = ln y$. This gives
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_1^{2 + sqrt{3}} frac{ln y}{1 + y^2} , dy.$$
Now let $y = tan theta$. Then we have
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2int_{frac{pi}{4}}^{frac{5pi}{12}} ln (tan theta) , dtheta.$$
Finally, enforcing a substitution of $theta mapsto dfrac{pi}{2} - theta$ leads to
begin{align}
I(2) &= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2 int_{frac{pi}{12}}^{frac{pi}{4}} ln (tan theta) , dtheta\
&= 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) + 2int_0^{frac{pi}{4}} ln (tan theta) , dtheta - 2 int_0^{frac{pi}{12}} ln (tan theta) , dtheta.
end{align}
For the first of the integrals we have
$$int_0^{frac{pi}{4}} ln (tan x) , dx = -mathbf{G}.$$
While for the second of the integrals we have
$$int_0^{frac{pi}{12}} ln (tan x) , dx = -frac{2}{3} mathbf{G}.$$
So finally
$$I(2) = 2mathbf{G} + frac{pi}{3} ln (2 + sqrt{3}) - 2mathbf{G} + frac{4}{3} mathbf{G},$$
or
$$int_0^{frac{pi}{2}} operatorname{arcsinh} (2 tan x) , dx = frac{pi}{3} ln (2 + sqrt{3}) + frac{4}{3} mathbf{G},$$
as announced.
answered Jan 23 at 2:51
omegadotomegadot
6,3972829
6,3972829
1
$begingroup$
begin{align}A&=int_0^{frac{pi}{4}}ln(cos x),dx\ B&=int_0^{frac{pi}{4}}ln(sin x),dx\ B-A&=int_0^{frac{pi}{4}}ln(tan x),dx\ &=-text{G}\ A+B&=int_0^{frac{pi}{4}}ln(sin xcos x),dx\ &=int_0^{frac{pi}{4}}lnleft(frac{sin(2x)}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(frac{sin x}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(sin xright),dx-frac{pi}{4}ln 2\ &=-frac{1}{2}piln 2\ A&=frac{1}{2}left(A+B-left(B-Aright)right)\ &=frac{1}{2}text{G}-frac{1}{4}piln 2 end{align}
$endgroup$
– FDP
Jan 23 at 13:44
$begingroup$
Yes, very nice.
$endgroup$
– omegadot
Jan 24 at 1:29
add a comment |
1
$begingroup$
begin{align}A&=int_0^{frac{pi}{4}}ln(cos x),dx\ B&=int_0^{frac{pi}{4}}ln(sin x),dx\ B-A&=int_0^{frac{pi}{4}}ln(tan x),dx\ &=-text{G}\ A+B&=int_0^{frac{pi}{4}}ln(sin xcos x),dx\ &=int_0^{frac{pi}{4}}lnleft(frac{sin(2x)}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(frac{sin x}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(sin xright),dx-frac{pi}{4}ln 2\ &=-frac{1}{2}piln 2\ A&=frac{1}{2}left(A+B-left(B-Aright)right)\ &=frac{1}{2}text{G}-frac{1}{4}piln 2 end{align}
$endgroup$
– FDP
Jan 23 at 13:44
$begingroup$
Yes, very nice.
$endgroup$
– omegadot
Jan 24 at 1:29
1
1
$begingroup$
begin{align}A&=int_0^{frac{pi}{4}}ln(cos x),dx\ B&=int_0^{frac{pi}{4}}ln(sin x),dx\ B-A&=int_0^{frac{pi}{4}}ln(tan x),dx\ &=-text{G}\ A+B&=int_0^{frac{pi}{4}}ln(sin xcos x),dx\ &=int_0^{frac{pi}{4}}lnleft(frac{sin(2x)}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(frac{sin x}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(sin xright),dx-frac{pi}{4}ln 2\ &=-frac{1}{2}piln 2\ A&=frac{1}{2}left(A+B-left(B-Aright)right)\ &=frac{1}{2}text{G}-frac{1}{4}piln 2 end{align}
$endgroup$
– FDP
Jan 23 at 13:44
$begingroup$
begin{align}A&=int_0^{frac{pi}{4}}ln(cos x),dx\ B&=int_0^{frac{pi}{4}}ln(sin x),dx\ B-A&=int_0^{frac{pi}{4}}ln(tan x),dx\ &=-text{G}\ A+B&=int_0^{frac{pi}{4}}ln(sin xcos x),dx\ &=int_0^{frac{pi}{4}}lnleft(frac{sin(2x)}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(frac{sin x}{2}right),dx\ &=frac{1}{2}int_0^{frac{pi}{2}}lnleft(sin xright),dx-frac{pi}{4}ln 2\ &=-frac{1}{2}piln 2\ A&=frac{1}{2}left(A+B-left(B-Aright)right)\ &=frac{1}{2}text{G}-frac{1}{4}piln 2 end{align}
$endgroup$
– FDP
Jan 23 at 13:44
$begingroup$
Yes, very nice.
$endgroup$
– omegadot
Jan 24 at 1:29
$begingroup$
Yes, very nice.
$endgroup$
– omegadot
Jan 24 at 1:29
add a comment |
$begingroup$
Sorry in a rush, so only a PARTIAL SOLUTION:
Here I will employ Feynman's Trick:
begin{equation}
I = int_0^{infty}frac{operatorname{arcsinh(2x)}}{1 + x^2}:dx
end{equation}
Let
begin{equation}
J(t) = int_0^{infty}frac{operatorname{arcsinh(tx)}}{1 + x^2}:dx
end{equation}
We observe that $J(2) = I$ and $J(0) = 0$. Using Leibniz's Integral rule we differentiate with respect to '$t$':
begin{equation}
J'(t) = int_0^{infty}frac{x}{sqrt{1 + t^2x^2}}frac{1}{1 + x^2}:dx = left[frac{1}{sqrt{t^2 - 1}} cdot arctanleft(sqrt{frac{1 + t^2x^2}{t^2 - 1}} right) right]_0^{infty} = frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{1}{sqrt{t^2 -1}} right) right]
end{equation}
Thus,
begin{align}
J(t) &= int frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{x}{sqrt{t^2 -1}} right) right]:dt \
&= int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt - int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = I_1 - I_2
end{align}
For $I_1$:
begin{equation}
I_1 = int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt = frac{pi}{2}lnleft| sqrt{t^2 - 1} + tright| + C_1
end{equation}
Where $C_1$ is the constant of integration. Note that $I_1(2) = lnleft|2 + sqrt{3} right|$
For $I_2$:
begin{equation}
I_2 = int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt
end{equation}
Unfortunately this is not so easy to evaluate. I will first make the substitution $u = frac{1}{sqrt{t^2 - 1}}$:
begin{align}
I_2 &= int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = int u cdot arctan(u) cdot frac{-u^4}{sqrt{1 +u^2}}:du\
& = - int frac{-u^5}{sqrt{1 +u^2}} cdot arctan(u) :du
end{align}
$endgroup$
$begingroup$
Will post up full solution later.
$endgroup$
– DavidG
Jan 22 at 10:08
add a comment |
$begingroup$
Sorry in a rush, so only a PARTIAL SOLUTION:
Here I will employ Feynman's Trick:
begin{equation}
I = int_0^{infty}frac{operatorname{arcsinh(2x)}}{1 + x^2}:dx
end{equation}
Let
begin{equation}
J(t) = int_0^{infty}frac{operatorname{arcsinh(tx)}}{1 + x^2}:dx
end{equation}
We observe that $J(2) = I$ and $J(0) = 0$. Using Leibniz's Integral rule we differentiate with respect to '$t$':
begin{equation}
J'(t) = int_0^{infty}frac{x}{sqrt{1 + t^2x^2}}frac{1}{1 + x^2}:dx = left[frac{1}{sqrt{t^2 - 1}} cdot arctanleft(sqrt{frac{1 + t^2x^2}{t^2 - 1}} right) right]_0^{infty} = frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{1}{sqrt{t^2 -1}} right) right]
end{equation}
Thus,
begin{align}
J(t) &= int frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{x}{sqrt{t^2 -1}} right) right]:dt \
&= int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt - int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = I_1 - I_2
end{align}
For $I_1$:
begin{equation}
I_1 = int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt = frac{pi}{2}lnleft| sqrt{t^2 - 1} + tright| + C_1
end{equation}
Where $C_1$ is the constant of integration. Note that $I_1(2) = lnleft|2 + sqrt{3} right|$
For $I_2$:
begin{equation}
I_2 = int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt
end{equation}
Unfortunately this is not so easy to evaluate. I will first make the substitution $u = frac{1}{sqrt{t^2 - 1}}$:
begin{align}
I_2 &= int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = int u cdot arctan(u) cdot frac{-u^4}{sqrt{1 +u^2}}:du\
& = - int frac{-u^5}{sqrt{1 +u^2}} cdot arctan(u) :du
end{align}
$endgroup$
$begingroup$
Will post up full solution later.
$endgroup$
– DavidG
Jan 22 at 10:08
add a comment |
$begingroup$
Sorry in a rush, so only a PARTIAL SOLUTION:
Here I will employ Feynman's Trick:
begin{equation}
I = int_0^{infty}frac{operatorname{arcsinh(2x)}}{1 + x^2}:dx
end{equation}
Let
begin{equation}
J(t) = int_0^{infty}frac{operatorname{arcsinh(tx)}}{1 + x^2}:dx
end{equation}
We observe that $J(2) = I$ and $J(0) = 0$. Using Leibniz's Integral rule we differentiate with respect to '$t$':
begin{equation}
J'(t) = int_0^{infty}frac{x}{sqrt{1 + t^2x^2}}frac{1}{1 + x^2}:dx = left[frac{1}{sqrt{t^2 - 1}} cdot arctanleft(sqrt{frac{1 + t^2x^2}{t^2 - 1}} right) right]_0^{infty} = frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{1}{sqrt{t^2 -1}} right) right]
end{equation}
Thus,
begin{align}
J(t) &= int frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{x}{sqrt{t^2 -1}} right) right]:dt \
&= int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt - int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = I_1 - I_2
end{align}
For $I_1$:
begin{equation}
I_1 = int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt = frac{pi}{2}lnleft| sqrt{t^2 - 1} + tright| + C_1
end{equation}
Where $C_1$ is the constant of integration. Note that $I_1(2) = lnleft|2 + sqrt{3} right|$
For $I_2$:
begin{equation}
I_2 = int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt
end{equation}
Unfortunately this is not so easy to evaluate. I will first make the substitution $u = frac{1}{sqrt{t^2 - 1}}$:
begin{align}
I_2 &= int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = int u cdot arctan(u) cdot frac{-u^4}{sqrt{1 +u^2}}:du\
& = - int frac{-u^5}{sqrt{1 +u^2}} cdot arctan(u) :du
end{align}
$endgroup$
Sorry in a rush, so only a PARTIAL SOLUTION:
Here I will employ Feynman's Trick:
begin{equation}
I = int_0^{infty}frac{operatorname{arcsinh(2x)}}{1 + x^2}:dx
end{equation}
Let
begin{equation}
J(t) = int_0^{infty}frac{operatorname{arcsinh(tx)}}{1 + x^2}:dx
end{equation}
We observe that $J(2) = I$ and $J(0) = 0$. Using Leibniz's Integral rule we differentiate with respect to '$t$':
begin{equation}
J'(t) = int_0^{infty}frac{x}{sqrt{1 + t^2x^2}}frac{1}{1 + x^2}:dx = left[frac{1}{sqrt{t^2 - 1}} cdot arctanleft(sqrt{frac{1 + t^2x^2}{t^2 - 1}} right) right]_0^{infty} = frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{1}{sqrt{t^2 -1}} right) right]
end{equation}
Thus,
begin{align}
J(t) &= int frac{1}{sqrt{t^2 - 1}}left[frac{pi}{2} - arctanleft(frac{x}{sqrt{t^2 -1}} right) right]:dt \
&= int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt - int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = I_1 - I_2
end{align}
For $I_1$:
begin{equation}
I_1 = int frac{pi}{2}cdot frac{1}{sqrt{t^2 - 1}}:dt = frac{pi}{2}lnleft| sqrt{t^2 - 1} + tright| + C_1
end{equation}
Where $C_1$ is the constant of integration. Note that $I_1(2) = lnleft|2 + sqrt{3} right|$
For $I_2$:
begin{equation}
I_2 = int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt
end{equation}
Unfortunately this is not so easy to evaluate. I will first make the substitution $u = frac{1}{sqrt{t^2 - 1}}$:
begin{align}
I_2 &= int frac{1}{sqrt{t^2 - 1}}arctanleft(frac{1}{sqrt{t^2 -1}} right):dt = int u cdot arctan(u) cdot frac{-u^4}{sqrt{1 +u^2}}:du\
& = - int frac{-u^5}{sqrt{1 +u^2}} cdot arctan(u) :du
end{align}
edited Jan 23 at 6:07
answered Jan 22 at 10:07
DavidGDavidG
2,5061726
2,5061726
$begingroup$
Will post up full solution later.
$endgroup$
– DavidG
Jan 22 at 10:08
add a comment |
$begingroup$
Will post up full solution later.
$endgroup$
– DavidG
Jan 22 at 10:08
$begingroup$
Will post up full solution later.
$endgroup$
– DavidG
Jan 22 at 10:08
$begingroup$
Will post up full solution later.
$endgroup$
– DavidG
Jan 22 at 10:08
add a comment |
$begingroup$
$$
begin{align}newcommand{arcsinh}{operatorname{arcsinh}}
int_0^inftyfrac{arcsinh(x)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x,mathrm{d}x}{cosh(x)}tag{1a}\
&=int_0^inftyfrac{2x,mathrm{d}x}{e^x+e^{-x}}tag{1b}\
&=2sum_{k=0}^infty(-1)^kint_0^infty x,e^{-(2k+1)x},mathrm{d}xtag{1c}\ &=2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}tag{1d}\[6pt]
&=2mathrm{G}tag{1e}
end{align}
$$
Explanation:
$text{(1a)}$: substitute $xmapstosinh(x)$
$text{(1b)}$: write $cosh(x)$ as exponentials
$text{(1c)}$: expand $left(e^x+e^{-x}right)^{-1}$ as a power series
$text{(1d)}$: evaluate the integral
$text{(1e)}$: use the definition of Catalan's Constant
$$
begin{align}
frac{mathrm{d}}{mathrm{d}a}int_0^inftyfrac{arcsinh(ax)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x}{1+x^2}frac{mathrm{d}x}{sqrt{1+a^2x^2}}tag{2a}\
&=int_0^inftyfrac{x}{a^2+x^2}frac{mathrm{d}x}{sqrt{1+x^2}}tag{2b}\
&=int_0^{pi/2}frac{mathrm{d}sec(x)}{a^2+tan^2(x)}tag{2c}\
&=int_1^inftyfrac{mathrm{d}x}{x^2+left(a^2-1right)}tag{2d}\
&=frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}}tag{2e}
end{align}
$$
Explanation:
$text{(2a)}$: $frac{mathrm{d}}{mathrm{d}a}arcsinh(ax)=frac{x}{sqrt{1+a^2x^2}}$
$text{(2b)}$: substitute $xmapsto x/a$
$text{(2c)}$: substitute $xmapstotan(x)$
$text{(2d)}$: substitute $sec(x)mapsto x$
$text{(2e)}$: arctan integral
Therefore,
$$
begin{align}newcommand{Li}{operatorname{Li}}
int_0^inftyfrac{arcsinh(2x)}{1+x^2},mathrm{d}x
&=2mathrm{G}+int_1^2frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}},mathrm{d}atag{3a}\
&=2mathrm{G}+int_0^{pi/3}frac{a}{cos(a)},mathrm{d}atag{3b}\
&=2mathrm{G}+2int_0^{pi/3}frac{a}{e^{ia}+e^{-ia}},mathrm{d}atag{3c}\
&=2mathrm{G}+2sum_{k=0}^infty(-1)^kint_0^{pi/3}ae^{-i(2k+1)a},mathrm{d}atag{3d}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}int_0^{(2k+1)pi/3}ae^{-ia},mathrm{d}atag{3e}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[(1+i(2k+1)pi/3)e^{-i(2k+1)pi/3}-1right]tag{3f}\
&=2mathrm{G}+fracpi3logleft(frac{2+sqrt3+i}{2-sqrt3-i}right)+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[e^{-i(2k+1)pi/3}-1right]tag{3g}\
&=2mathrm{G}+fracpi3logleft(left(2+sqrt3right)iright)
+sum_{k=0}^infty(-1)^kscriptsizeleft[frac{-1-isqrt3}{(6k+1)^2}-frac{-4}{(6k+3)^2}+frac{-1+isqrt3}{(6k+5)^2}right]tag{3h}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-sqrt3sum_{k=0}^infty(-1)^kscriptsizeleft(frac1{(6k+1)^2}-frac1{(6k+5)^2}right)right]tag{3i}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-frac{sqrt3}{36}sum_{kinmathbb{Z}}frac{(-1)^k}{left(k+frac16right)^2}right]tag{3j}\
&=bbox[5px,border:2px solid #C0A000]{frac43mathrm{G}+fracpi3logleft(2+sqrt3right)}tag{3k}
end{align}
$$
Explanation:
$text{(3a)}$: apply $(1)$ and $(2)$
$text{(3b)}$: substitute $amapstosec(a)$
$text{(3c)}$: write $cos(x)$ as exponentials
$text{(3d)}$: expand $left(e^{ix}+e^{-ix}right)^{-1}$ as a power series
$text{(3e)}$: substitute $amapsto a/(2k+1)$
$text{(3f)}$: integrate
$text{(3g)}$: recognize the series for $arctan(x)=frac1{2i}logleft(frac{1+ix}{1-ix}right)$
$text{(3h)}$: evaluate the exponentials
$text{(3i)}$: separate the real and imaginary parts
$text{(3j)}$: rewrite the sum
$text{(3k)}$: $sum_{kinmathbb{Z}}frac{(-1)^k}{(k+x)^2}=pi^2cot(pi x)csc(pi x)$
$endgroup$
$begingroup$
Seems like there should be a^2
in the denominator of the sum of the explanation (3k)
$endgroup$
– Kemono Chen
Jan 24 at 9:03
$begingroup$
@KemonoChen: Indeed. I put the parentheses there because I meant to square the denominator. Thanks. While it's true that we can just take the real part of the right side since the quantity is real, I wanted to make sure I hadn't made a mistake and verify that the imaginary part was $0$.
$endgroup$
– robjohn♦
Jan 24 at 9:25
add a comment |
$begingroup$
$$
begin{align}newcommand{arcsinh}{operatorname{arcsinh}}
int_0^inftyfrac{arcsinh(x)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x,mathrm{d}x}{cosh(x)}tag{1a}\
&=int_0^inftyfrac{2x,mathrm{d}x}{e^x+e^{-x}}tag{1b}\
&=2sum_{k=0}^infty(-1)^kint_0^infty x,e^{-(2k+1)x},mathrm{d}xtag{1c}\ &=2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}tag{1d}\[6pt]
&=2mathrm{G}tag{1e}
end{align}
$$
Explanation:
$text{(1a)}$: substitute $xmapstosinh(x)$
$text{(1b)}$: write $cosh(x)$ as exponentials
$text{(1c)}$: expand $left(e^x+e^{-x}right)^{-1}$ as a power series
$text{(1d)}$: evaluate the integral
$text{(1e)}$: use the definition of Catalan's Constant
$$
begin{align}
frac{mathrm{d}}{mathrm{d}a}int_0^inftyfrac{arcsinh(ax)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x}{1+x^2}frac{mathrm{d}x}{sqrt{1+a^2x^2}}tag{2a}\
&=int_0^inftyfrac{x}{a^2+x^2}frac{mathrm{d}x}{sqrt{1+x^2}}tag{2b}\
&=int_0^{pi/2}frac{mathrm{d}sec(x)}{a^2+tan^2(x)}tag{2c}\
&=int_1^inftyfrac{mathrm{d}x}{x^2+left(a^2-1right)}tag{2d}\
&=frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}}tag{2e}
end{align}
$$
Explanation:
$text{(2a)}$: $frac{mathrm{d}}{mathrm{d}a}arcsinh(ax)=frac{x}{sqrt{1+a^2x^2}}$
$text{(2b)}$: substitute $xmapsto x/a$
$text{(2c)}$: substitute $xmapstotan(x)$
$text{(2d)}$: substitute $sec(x)mapsto x$
$text{(2e)}$: arctan integral
Therefore,
$$
begin{align}newcommand{Li}{operatorname{Li}}
int_0^inftyfrac{arcsinh(2x)}{1+x^2},mathrm{d}x
&=2mathrm{G}+int_1^2frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}},mathrm{d}atag{3a}\
&=2mathrm{G}+int_0^{pi/3}frac{a}{cos(a)},mathrm{d}atag{3b}\
&=2mathrm{G}+2int_0^{pi/3}frac{a}{e^{ia}+e^{-ia}},mathrm{d}atag{3c}\
&=2mathrm{G}+2sum_{k=0}^infty(-1)^kint_0^{pi/3}ae^{-i(2k+1)a},mathrm{d}atag{3d}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}int_0^{(2k+1)pi/3}ae^{-ia},mathrm{d}atag{3e}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[(1+i(2k+1)pi/3)e^{-i(2k+1)pi/3}-1right]tag{3f}\
&=2mathrm{G}+fracpi3logleft(frac{2+sqrt3+i}{2-sqrt3-i}right)+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[e^{-i(2k+1)pi/3}-1right]tag{3g}\
&=2mathrm{G}+fracpi3logleft(left(2+sqrt3right)iright)
+sum_{k=0}^infty(-1)^kscriptsizeleft[frac{-1-isqrt3}{(6k+1)^2}-frac{-4}{(6k+3)^2}+frac{-1+isqrt3}{(6k+5)^2}right]tag{3h}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-sqrt3sum_{k=0}^infty(-1)^kscriptsizeleft(frac1{(6k+1)^2}-frac1{(6k+5)^2}right)right]tag{3i}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-frac{sqrt3}{36}sum_{kinmathbb{Z}}frac{(-1)^k}{left(k+frac16right)^2}right]tag{3j}\
&=bbox[5px,border:2px solid #C0A000]{frac43mathrm{G}+fracpi3logleft(2+sqrt3right)}tag{3k}
end{align}
$$
Explanation:
$text{(3a)}$: apply $(1)$ and $(2)$
$text{(3b)}$: substitute $amapstosec(a)$
$text{(3c)}$: write $cos(x)$ as exponentials
$text{(3d)}$: expand $left(e^{ix}+e^{-ix}right)^{-1}$ as a power series
$text{(3e)}$: substitute $amapsto a/(2k+1)$
$text{(3f)}$: integrate
$text{(3g)}$: recognize the series for $arctan(x)=frac1{2i}logleft(frac{1+ix}{1-ix}right)$
$text{(3h)}$: evaluate the exponentials
$text{(3i)}$: separate the real and imaginary parts
$text{(3j)}$: rewrite the sum
$text{(3k)}$: $sum_{kinmathbb{Z}}frac{(-1)^k}{(k+x)^2}=pi^2cot(pi x)csc(pi x)$
$endgroup$
$begingroup$
Seems like there should be a^2
in the denominator of the sum of the explanation (3k)
$endgroup$
– Kemono Chen
Jan 24 at 9:03
$begingroup$
@KemonoChen: Indeed. I put the parentheses there because I meant to square the denominator. Thanks. While it's true that we can just take the real part of the right side since the quantity is real, I wanted to make sure I hadn't made a mistake and verify that the imaginary part was $0$.
$endgroup$
– robjohn♦
Jan 24 at 9:25
add a comment |
$begingroup$
$$
begin{align}newcommand{arcsinh}{operatorname{arcsinh}}
int_0^inftyfrac{arcsinh(x)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x,mathrm{d}x}{cosh(x)}tag{1a}\
&=int_0^inftyfrac{2x,mathrm{d}x}{e^x+e^{-x}}tag{1b}\
&=2sum_{k=0}^infty(-1)^kint_0^infty x,e^{-(2k+1)x},mathrm{d}xtag{1c}\ &=2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}tag{1d}\[6pt]
&=2mathrm{G}tag{1e}
end{align}
$$
Explanation:
$text{(1a)}$: substitute $xmapstosinh(x)$
$text{(1b)}$: write $cosh(x)$ as exponentials
$text{(1c)}$: expand $left(e^x+e^{-x}right)^{-1}$ as a power series
$text{(1d)}$: evaluate the integral
$text{(1e)}$: use the definition of Catalan's Constant
$$
begin{align}
frac{mathrm{d}}{mathrm{d}a}int_0^inftyfrac{arcsinh(ax)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x}{1+x^2}frac{mathrm{d}x}{sqrt{1+a^2x^2}}tag{2a}\
&=int_0^inftyfrac{x}{a^2+x^2}frac{mathrm{d}x}{sqrt{1+x^2}}tag{2b}\
&=int_0^{pi/2}frac{mathrm{d}sec(x)}{a^2+tan^2(x)}tag{2c}\
&=int_1^inftyfrac{mathrm{d}x}{x^2+left(a^2-1right)}tag{2d}\
&=frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}}tag{2e}
end{align}
$$
Explanation:
$text{(2a)}$: $frac{mathrm{d}}{mathrm{d}a}arcsinh(ax)=frac{x}{sqrt{1+a^2x^2}}$
$text{(2b)}$: substitute $xmapsto x/a$
$text{(2c)}$: substitute $xmapstotan(x)$
$text{(2d)}$: substitute $sec(x)mapsto x$
$text{(2e)}$: arctan integral
Therefore,
$$
begin{align}newcommand{Li}{operatorname{Li}}
int_0^inftyfrac{arcsinh(2x)}{1+x^2},mathrm{d}x
&=2mathrm{G}+int_1^2frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}},mathrm{d}atag{3a}\
&=2mathrm{G}+int_0^{pi/3}frac{a}{cos(a)},mathrm{d}atag{3b}\
&=2mathrm{G}+2int_0^{pi/3}frac{a}{e^{ia}+e^{-ia}},mathrm{d}atag{3c}\
&=2mathrm{G}+2sum_{k=0}^infty(-1)^kint_0^{pi/3}ae^{-i(2k+1)a},mathrm{d}atag{3d}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}int_0^{(2k+1)pi/3}ae^{-ia},mathrm{d}atag{3e}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[(1+i(2k+1)pi/3)e^{-i(2k+1)pi/3}-1right]tag{3f}\
&=2mathrm{G}+fracpi3logleft(frac{2+sqrt3+i}{2-sqrt3-i}right)+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[e^{-i(2k+1)pi/3}-1right]tag{3g}\
&=2mathrm{G}+fracpi3logleft(left(2+sqrt3right)iright)
+sum_{k=0}^infty(-1)^kscriptsizeleft[frac{-1-isqrt3}{(6k+1)^2}-frac{-4}{(6k+3)^2}+frac{-1+isqrt3}{(6k+5)^2}right]tag{3h}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-sqrt3sum_{k=0}^infty(-1)^kscriptsizeleft(frac1{(6k+1)^2}-frac1{(6k+5)^2}right)right]tag{3i}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-frac{sqrt3}{36}sum_{kinmathbb{Z}}frac{(-1)^k}{left(k+frac16right)^2}right]tag{3j}\
&=bbox[5px,border:2px solid #C0A000]{frac43mathrm{G}+fracpi3logleft(2+sqrt3right)}tag{3k}
end{align}
$$
Explanation:
$text{(3a)}$: apply $(1)$ and $(2)$
$text{(3b)}$: substitute $amapstosec(a)$
$text{(3c)}$: write $cos(x)$ as exponentials
$text{(3d)}$: expand $left(e^{ix}+e^{-ix}right)^{-1}$ as a power series
$text{(3e)}$: substitute $amapsto a/(2k+1)$
$text{(3f)}$: integrate
$text{(3g)}$: recognize the series for $arctan(x)=frac1{2i}logleft(frac{1+ix}{1-ix}right)$
$text{(3h)}$: evaluate the exponentials
$text{(3i)}$: separate the real and imaginary parts
$text{(3j)}$: rewrite the sum
$text{(3k)}$: $sum_{kinmathbb{Z}}frac{(-1)^k}{(k+x)^2}=pi^2cot(pi x)csc(pi x)$
$endgroup$
$$
begin{align}newcommand{arcsinh}{operatorname{arcsinh}}
int_0^inftyfrac{arcsinh(x)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x,mathrm{d}x}{cosh(x)}tag{1a}\
&=int_0^inftyfrac{2x,mathrm{d}x}{e^x+e^{-x}}tag{1b}\
&=2sum_{k=0}^infty(-1)^kint_0^infty x,e^{-(2k+1)x},mathrm{d}xtag{1c}\ &=2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}tag{1d}\[6pt]
&=2mathrm{G}tag{1e}
end{align}
$$
Explanation:
$text{(1a)}$: substitute $xmapstosinh(x)$
$text{(1b)}$: write $cosh(x)$ as exponentials
$text{(1c)}$: expand $left(e^x+e^{-x}right)^{-1}$ as a power series
$text{(1d)}$: evaluate the integral
$text{(1e)}$: use the definition of Catalan's Constant
$$
begin{align}
frac{mathrm{d}}{mathrm{d}a}int_0^inftyfrac{arcsinh(ax)}{1+x^2},mathrm{d}x
&=int_0^inftyfrac{x}{1+x^2}frac{mathrm{d}x}{sqrt{1+a^2x^2}}tag{2a}\
&=int_0^inftyfrac{x}{a^2+x^2}frac{mathrm{d}x}{sqrt{1+x^2}}tag{2b}\
&=int_0^{pi/2}frac{mathrm{d}sec(x)}{a^2+tan^2(x)}tag{2c}\
&=int_1^inftyfrac{mathrm{d}x}{x^2+left(a^2-1right)}tag{2d}\
&=frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}}tag{2e}
end{align}
$$
Explanation:
$text{(2a)}$: $frac{mathrm{d}}{mathrm{d}a}arcsinh(ax)=frac{x}{sqrt{1+a^2x^2}}$
$text{(2b)}$: substitute $xmapsto x/a$
$text{(2c)}$: substitute $xmapstotan(x)$
$text{(2d)}$: substitute $sec(x)mapsto x$
$text{(2e)}$: arctan integral
Therefore,
$$
begin{align}newcommand{Li}{operatorname{Li}}
int_0^inftyfrac{arcsinh(2x)}{1+x^2},mathrm{d}x
&=2mathrm{G}+int_1^2frac{arctanleft(sqrt{a^2-1}right)}{sqrt{a^2-1}},mathrm{d}atag{3a}\
&=2mathrm{G}+int_0^{pi/3}frac{a}{cos(a)},mathrm{d}atag{3b}\
&=2mathrm{G}+2int_0^{pi/3}frac{a}{e^{ia}+e^{-ia}},mathrm{d}atag{3c}\
&=2mathrm{G}+2sum_{k=0}^infty(-1)^kint_0^{pi/3}ae^{-i(2k+1)a},mathrm{d}atag{3d}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}int_0^{(2k+1)pi/3}ae^{-ia},mathrm{d}atag{3e}\
&=2mathrm{G}+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[(1+i(2k+1)pi/3)e^{-i(2k+1)pi/3}-1right]tag{3f}\
&=2mathrm{G}+fracpi3logleft(frac{2+sqrt3+i}{2-sqrt3-i}right)+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}left[e^{-i(2k+1)pi/3}-1right]tag{3g}\
&=2mathrm{G}+fracpi3logleft(left(2+sqrt3right)iright)
+sum_{k=0}^infty(-1)^kscriptsizeleft[frac{-1-isqrt3}{(6k+1)^2}-frac{-4}{(6k+3)^2}+frac{-1+isqrt3}{(6k+5)^2}right]tag{3h}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-sqrt3sum_{k=0}^infty(-1)^kscriptsizeleft(frac1{(6k+1)^2}-frac1{(6k+5)^2}right)right]tag{3i}\
&=frac43mathrm{G}+fracpi3logleft(2+sqrt3right)+ileft[frac{pi^2}6-frac{sqrt3}{36}sum_{kinmathbb{Z}}frac{(-1)^k}{left(k+frac16right)^2}right]tag{3j}\
&=bbox[5px,border:2px solid #C0A000]{frac43mathrm{G}+fracpi3logleft(2+sqrt3right)}tag{3k}
end{align}
$$
Explanation:
$text{(3a)}$: apply $(1)$ and $(2)$
$text{(3b)}$: substitute $amapstosec(a)$
$text{(3c)}$: write $cos(x)$ as exponentials
$text{(3d)}$: expand $left(e^{ix}+e^{-ix}right)^{-1}$ as a power series
$text{(3e)}$: substitute $amapsto a/(2k+1)$
$text{(3f)}$: integrate
$text{(3g)}$: recognize the series for $arctan(x)=frac1{2i}logleft(frac{1+ix}{1-ix}right)$
$text{(3h)}$: evaluate the exponentials
$text{(3i)}$: separate the real and imaginary parts
$text{(3j)}$: rewrite the sum
$text{(3k)}$: $sum_{kinmathbb{Z}}frac{(-1)^k}{(k+x)^2}=pi^2cot(pi x)csc(pi x)$
edited Jan 24 at 9:24
answered Jan 24 at 8:44
robjohn♦robjohn
269k27309635
269k27309635
$begingroup$
Seems like there should be a^2
in the denominator of the sum of the explanation (3k)
$endgroup$
– Kemono Chen
Jan 24 at 9:03
$begingroup$
@KemonoChen: Indeed. I put the parentheses there because I meant to square the denominator. Thanks. While it's true that we can just take the real part of the right side since the quantity is real, I wanted to make sure I hadn't made a mistake and verify that the imaginary part was $0$.
$endgroup$
– robjohn♦
Jan 24 at 9:25
add a comment |
$begingroup$
Seems like there should be a^2
in the denominator of the sum of the explanation (3k)
$endgroup$
– Kemono Chen
Jan 24 at 9:03
$begingroup$
@KemonoChen: Indeed. I put the parentheses there because I meant to square the denominator. Thanks. While it's true that we can just take the real part of the right side since the quantity is real, I wanted to make sure I hadn't made a mistake and verify that the imaginary part was $0$.
$endgroup$
– robjohn♦
Jan 24 at 9:25
$begingroup$
Seems like there should be a
^2
in the denominator of the sum of the explanation (3k)$endgroup$
– Kemono Chen
Jan 24 at 9:03
$begingroup$
Seems like there should be a
^2
in the denominator of the sum of the explanation (3k)$endgroup$
– Kemono Chen
Jan 24 at 9:03
$begingroup$
@KemonoChen: Indeed. I put the parentheses there because I meant to square the denominator. Thanks. While it's true that we can just take the real part of the right side since the quantity is real, I wanted to make sure I hadn't made a mistake and verify that the imaginary part was $0$.
$endgroup$
– robjohn♦
Jan 24 at 9:25
$begingroup$
@KemonoChen: Indeed. I put the parentheses there because I meant to square the denominator. Thanks. While it's true that we can just take the real part of the right side since the quantity is real, I wanted to make sure I hadn't made a mistake and verify that the imaginary part was $0$.
$endgroup$
– robjohn♦
Jan 24 at 9:25
add a comment |
$begingroup$
This is not an answer.
Your premonition seems to be good. Using another CAS,
$$2int_0^inftyfrac{xcosh( x)}{3+cosh^2(x)},dx=-frac{pi}{4} log left(7-4 sqrt{3}right)-i left(text{Li}_2left(-i left(-2+sqrt{3}right)right)-text{Li}_2left(i
left(-2+sqrt{3}right)right)right)$$ Now, ???
$endgroup$
add a comment |
$begingroup$
This is not an answer.
Your premonition seems to be good. Using another CAS,
$$2int_0^inftyfrac{xcosh( x)}{3+cosh^2(x)},dx=-frac{pi}{4} log left(7-4 sqrt{3}right)-i left(text{Li}_2left(-i left(-2+sqrt{3}right)right)-text{Li}_2left(i
left(-2+sqrt{3}right)right)right)$$ Now, ???
$endgroup$
add a comment |
$begingroup$
This is not an answer.
Your premonition seems to be good. Using another CAS,
$$2int_0^inftyfrac{xcosh( x)}{3+cosh^2(x)},dx=-frac{pi}{4} log left(7-4 sqrt{3}right)-i left(text{Li}_2left(-i left(-2+sqrt{3}right)right)-text{Li}_2left(i
left(-2+sqrt{3}right)right)right)$$ Now, ???
$endgroup$
This is not an answer.
Your premonition seems to be good. Using another CAS,
$$2int_0^inftyfrac{xcosh( x)}{3+cosh^2(x)},dx=-frac{pi}{4} log left(7-4 sqrt{3}right)-i left(text{Li}_2left(-i left(-2+sqrt{3}right)right)-text{Li}_2left(i
left(-2+sqrt{3}right)right)right)$$ Now, ???
answered Jan 22 at 9:12
Claude LeiboviciClaude Leibovici
123k1157135
123k1157135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082875%2fevaluating-int-0-pi-2-operatornamearcsinh2-tan-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown