Splitting of the tangent bundle of a vector bundle and connections
$begingroup$
Let $pi:Eto M$ be a smooth vector bundle. Then we have the following exact sequence of vector bundles over $E$:
$$
0to VExrightarrow{} TExrightarrow{mathrm{d}pi}pi^*TMto 0
$$
Here $VE$ is the vertical bundle, that is kernel of the bunble map $mathrm{d}pi$. This sequence splits, so there is a bundle morphism $sigma:pi^*TMto TE$ such that $mathrm{d}picircsigma=mathrm{Id}$. It can be shown that the data of such a $sigma$ is equivalent to a connection (covariant derivative) $nabla$ on $Eto M$ (see for instance the volume 2 of Greub-Halperin-Vanstone). Also we know that $VEcongpi^*E$ so that we can write the following decomposition:
$$
TEcongpi^*Eopluspi^*TM
$$
My question is the following: considering $E$ as a manifold, I would like to consider differential forms on $E$, that is $Gamma(Lambda T^*E)$; is the De Rham differential linked to $nabla$ in some way?
Thank you for your help. Any reference would be very useful.
differential-geometry vector-bundles exact-sequence connections
$endgroup$
add a comment |
$begingroup$
Let $pi:Eto M$ be a smooth vector bundle. Then we have the following exact sequence of vector bundles over $E$:
$$
0to VExrightarrow{} TExrightarrow{mathrm{d}pi}pi^*TMto 0
$$
Here $VE$ is the vertical bundle, that is kernel of the bunble map $mathrm{d}pi$. This sequence splits, so there is a bundle morphism $sigma:pi^*TMto TE$ such that $mathrm{d}picircsigma=mathrm{Id}$. It can be shown that the data of such a $sigma$ is equivalent to a connection (covariant derivative) $nabla$ on $Eto M$ (see for instance the volume 2 of Greub-Halperin-Vanstone). Also we know that $VEcongpi^*E$ so that we can write the following decomposition:
$$
TEcongpi^*Eopluspi^*TM
$$
My question is the following: considering $E$ as a manifold, I would like to consider differential forms on $E$, that is $Gamma(Lambda T^*E)$; is the De Rham differential linked to $nabla$ in some way?
Thank you for your help. Any reference would be very useful.
differential-geometry vector-bundles exact-sequence connections
$endgroup$
add a comment |
$begingroup$
Let $pi:Eto M$ be a smooth vector bundle. Then we have the following exact sequence of vector bundles over $E$:
$$
0to VExrightarrow{} TExrightarrow{mathrm{d}pi}pi^*TMto 0
$$
Here $VE$ is the vertical bundle, that is kernel of the bunble map $mathrm{d}pi$. This sequence splits, so there is a bundle morphism $sigma:pi^*TMto TE$ such that $mathrm{d}picircsigma=mathrm{Id}$. It can be shown that the data of such a $sigma$ is equivalent to a connection (covariant derivative) $nabla$ on $Eto M$ (see for instance the volume 2 of Greub-Halperin-Vanstone). Also we know that $VEcongpi^*E$ so that we can write the following decomposition:
$$
TEcongpi^*Eopluspi^*TM
$$
My question is the following: considering $E$ as a manifold, I would like to consider differential forms on $E$, that is $Gamma(Lambda T^*E)$; is the De Rham differential linked to $nabla$ in some way?
Thank you for your help. Any reference would be very useful.
differential-geometry vector-bundles exact-sequence connections
$endgroup$
Let $pi:Eto M$ be a smooth vector bundle. Then we have the following exact sequence of vector bundles over $E$:
$$
0to VExrightarrow{} TExrightarrow{mathrm{d}pi}pi^*TMto 0
$$
Here $VE$ is the vertical bundle, that is kernel of the bunble map $mathrm{d}pi$. This sequence splits, so there is a bundle morphism $sigma:pi^*TMto TE$ such that $mathrm{d}picircsigma=mathrm{Id}$. It can be shown that the data of such a $sigma$ is equivalent to a connection (covariant derivative) $nabla$ on $Eto M$ (see for instance the volume 2 of Greub-Halperin-Vanstone). Also we know that $VEcongpi^*E$ so that we can write the following decomposition:
$$
TEcongpi^*Eopluspi^*TM
$$
My question is the following: considering $E$ as a manifold, I would like to consider differential forms on $E$, that is $Gamma(Lambda T^*E)$; is the De Rham differential linked to $nabla$ in some way?
Thank you for your help. Any reference would be very useful.
differential-geometry vector-bundles exact-sequence connections
differential-geometry vector-bundles exact-sequence connections
edited Jun 20 '14 at 8:53
bc87
asked Jun 18 '14 at 15:45
bc87bc87
1249
1249
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The covariant derivative $nabla$ is a map $nabla: Gamma(TM)times Gamma(E)longrightarrow Gamma(E)$ which is $mathbb R$-bilinear and satisfies $$nabla_{fcdot X} s=fcdot nabla_X squad textrm{and}quad nabla_alpha (fcdot s)=fcdot nabla_X s+mathcal{L}_{X}(f)cdot s,$$ for every $fin C^infty(M)$, $XinGamma(TM)$ and $sin Gamma(E)$. We can then define $$d_nabla: Gamma(Lambda^p T^*Motimes E)longrightarrow Gamma(Lambda^{p+1} T^*Motimes E),$$ setting $$begin{eqnarray*}
d_nabla varepsilon(X_1, ldots, X_{p+1})&&:=sum_{j=1}^{p+1}(-1)^{j+1} nabla_{X_j} varepsilon(X_1, ldots, widehat{X_j}, ldots, X_j)\
&&+sum_{i<j} (-1)^{i+j} varepsilon([X_i, X_j], X_1, ldots, widehat{X_i}, ldots, widehat{X_j}, ldots, X_{p+1}).end{eqnarray*}$$ To define this I'm using the isomorphism:
$$Gamma(Lambda^p T^* Motimes E)simeq mathsf{Hom}_{C^infty(M)} (Lambda^p Gamma(TM), Gamma(E))simeq mathsf{Alt}^p_{C^infty(M)}(Gamma(TM), Gamma(E)).$$
If I'm not wrong, $d_nabla^2=0$ if and only if $nabla$ is a flat connection.
Up to this point everything is ok. Now, my guess is that you have a product:
$$cdot:Gamma(Lambda^p T^*M)times Gamma(Lambda^q T^* Motimes E)longrightarrow Gamma(Lambda^{p+q} T^*M otimes E), $$ defined in the obvious way and it holds:
$$d_nabla (alphacdot omega)=d_{mathsf{dR}}alphacdot omega+(-1)^{|alpha|} alpha cdot d_nabla omega. $$
Hope it helps.
P.s: If you want to know where those things came from look for Lie algebroid representations. If I'm not wrong you can find something here.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f838600%2fsplitting-of-the-tangent-bundle-of-a-vector-bundle-and-connections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The covariant derivative $nabla$ is a map $nabla: Gamma(TM)times Gamma(E)longrightarrow Gamma(E)$ which is $mathbb R$-bilinear and satisfies $$nabla_{fcdot X} s=fcdot nabla_X squad textrm{and}quad nabla_alpha (fcdot s)=fcdot nabla_X s+mathcal{L}_{X}(f)cdot s,$$ for every $fin C^infty(M)$, $XinGamma(TM)$ and $sin Gamma(E)$. We can then define $$d_nabla: Gamma(Lambda^p T^*Motimes E)longrightarrow Gamma(Lambda^{p+1} T^*Motimes E),$$ setting $$begin{eqnarray*}
d_nabla varepsilon(X_1, ldots, X_{p+1})&&:=sum_{j=1}^{p+1}(-1)^{j+1} nabla_{X_j} varepsilon(X_1, ldots, widehat{X_j}, ldots, X_j)\
&&+sum_{i<j} (-1)^{i+j} varepsilon([X_i, X_j], X_1, ldots, widehat{X_i}, ldots, widehat{X_j}, ldots, X_{p+1}).end{eqnarray*}$$ To define this I'm using the isomorphism:
$$Gamma(Lambda^p T^* Motimes E)simeq mathsf{Hom}_{C^infty(M)} (Lambda^p Gamma(TM), Gamma(E))simeq mathsf{Alt}^p_{C^infty(M)}(Gamma(TM), Gamma(E)).$$
If I'm not wrong, $d_nabla^2=0$ if and only if $nabla$ is a flat connection.
Up to this point everything is ok. Now, my guess is that you have a product:
$$cdot:Gamma(Lambda^p T^*M)times Gamma(Lambda^q T^* Motimes E)longrightarrow Gamma(Lambda^{p+q} T^*M otimes E), $$ defined in the obvious way and it holds:
$$d_nabla (alphacdot omega)=d_{mathsf{dR}}alphacdot omega+(-1)^{|alpha|} alpha cdot d_nabla omega. $$
Hope it helps.
P.s: If you want to know where those things came from look for Lie algebroid representations. If I'm not wrong you can find something here.
$endgroup$
add a comment |
$begingroup$
The covariant derivative $nabla$ is a map $nabla: Gamma(TM)times Gamma(E)longrightarrow Gamma(E)$ which is $mathbb R$-bilinear and satisfies $$nabla_{fcdot X} s=fcdot nabla_X squad textrm{and}quad nabla_alpha (fcdot s)=fcdot nabla_X s+mathcal{L}_{X}(f)cdot s,$$ for every $fin C^infty(M)$, $XinGamma(TM)$ and $sin Gamma(E)$. We can then define $$d_nabla: Gamma(Lambda^p T^*Motimes E)longrightarrow Gamma(Lambda^{p+1} T^*Motimes E),$$ setting $$begin{eqnarray*}
d_nabla varepsilon(X_1, ldots, X_{p+1})&&:=sum_{j=1}^{p+1}(-1)^{j+1} nabla_{X_j} varepsilon(X_1, ldots, widehat{X_j}, ldots, X_j)\
&&+sum_{i<j} (-1)^{i+j} varepsilon([X_i, X_j], X_1, ldots, widehat{X_i}, ldots, widehat{X_j}, ldots, X_{p+1}).end{eqnarray*}$$ To define this I'm using the isomorphism:
$$Gamma(Lambda^p T^* Motimes E)simeq mathsf{Hom}_{C^infty(M)} (Lambda^p Gamma(TM), Gamma(E))simeq mathsf{Alt}^p_{C^infty(M)}(Gamma(TM), Gamma(E)).$$
If I'm not wrong, $d_nabla^2=0$ if and only if $nabla$ is a flat connection.
Up to this point everything is ok. Now, my guess is that you have a product:
$$cdot:Gamma(Lambda^p T^*M)times Gamma(Lambda^q T^* Motimes E)longrightarrow Gamma(Lambda^{p+q} T^*M otimes E), $$ defined in the obvious way and it holds:
$$d_nabla (alphacdot omega)=d_{mathsf{dR}}alphacdot omega+(-1)^{|alpha|} alpha cdot d_nabla omega. $$
Hope it helps.
P.s: If you want to know where those things came from look for Lie algebroid representations. If I'm not wrong you can find something here.
$endgroup$
add a comment |
$begingroup$
The covariant derivative $nabla$ is a map $nabla: Gamma(TM)times Gamma(E)longrightarrow Gamma(E)$ which is $mathbb R$-bilinear and satisfies $$nabla_{fcdot X} s=fcdot nabla_X squad textrm{and}quad nabla_alpha (fcdot s)=fcdot nabla_X s+mathcal{L}_{X}(f)cdot s,$$ for every $fin C^infty(M)$, $XinGamma(TM)$ and $sin Gamma(E)$. We can then define $$d_nabla: Gamma(Lambda^p T^*Motimes E)longrightarrow Gamma(Lambda^{p+1} T^*Motimes E),$$ setting $$begin{eqnarray*}
d_nabla varepsilon(X_1, ldots, X_{p+1})&&:=sum_{j=1}^{p+1}(-1)^{j+1} nabla_{X_j} varepsilon(X_1, ldots, widehat{X_j}, ldots, X_j)\
&&+sum_{i<j} (-1)^{i+j} varepsilon([X_i, X_j], X_1, ldots, widehat{X_i}, ldots, widehat{X_j}, ldots, X_{p+1}).end{eqnarray*}$$ To define this I'm using the isomorphism:
$$Gamma(Lambda^p T^* Motimes E)simeq mathsf{Hom}_{C^infty(M)} (Lambda^p Gamma(TM), Gamma(E))simeq mathsf{Alt}^p_{C^infty(M)}(Gamma(TM), Gamma(E)).$$
If I'm not wrong, $d_nabla^2=0$ if and only if $nabla$ is a flat connection.
Up to this point everything is ok. Now, my guess is that you have a product:
$$cdot:Gamma(Lambda^p T^*M)times Gamma(Lambda^q T^* Motimes E)longrightarrow Gamma(Lambda^{p+q} T^*M otimes E), $$ defined in the obvious way and it holds:
$$d_nabla (alphacdot omega)=d_{mathsf{dR}}alphacdot omega+(-1)^{|alpha|} alpha cdot d_nabla omega. $$
Hope it helps.
P.s: If you want to know where those things came from look for Lie algebroid representations. If I'm not wrong you can find something here.
$endgroup$
The covariant derivative $nabla$ is a map $nabla: Gamma(TM)times Gamma(E)longrightarrow Gamma(E)$ which is $mathbb R$-bilinear and satisfies $$nabla_{fcdot X} s=fcdot nabla_X squad textrm{and}quad nabla_alpha (fcdot s)=fcdot nabla_X s+mathcal{L}_{X}(f)cdot s,$$ for every $fin C^infty(M)$, $XinGamma(TM)$ and $sin Gamma(E)$. We can then define $$d_nabla: Gamma(Lambda^p T^*Motimes E)longrightarrow Gamma(Lambda^{p+1} T^*Motimes E),$$ setting $$begin{eqnarray*}
d_nabla varepsilon(X_1, ldots, X_{p+1})&&:=sum_{j=1}^{p+1}(-1)^{j+1} nabla_{X_j} varepsilon(X_1, ldots, widehat{X_j}, ldots, X_j)\
&&+sum_{i<j} (-1)^{i+j} varepsilon([X_i, X_j], X_1, ldots, widehat{X_i}, ldots, widehat{X_j}, ldots, X_{p+1}).end{eqnarray*}$$ To define this I'm using the isomorphism:
$$Gamma(Lambda^p T^* Motimes E)simeq mathsf{Hom}_{C^infty(M)} (Lambda^p Gamma(TM), Gamma(E))simeq mathsf{Alt}^p_{C^infty(M)}(Gamma(TM), Gamma(E)).$$
If I'm not wrong, $d_nabla^2=0$ if and only if $nabla$ is a flat connection.
Up to this point everything is ok. Now, my guess is that you have a product:
$$cdot:Gamma(Lambda^p T^*M)times Gamma(Lambda^q T^* Motimes E)longrightarrow Gamma(Lambda^{p+q} T^*M otimes E), $$ defined in the obvious way and it holds:
$$d_nabla (alphacdot omega)=d_{mathsf{dR}}alphacdot omega+(-1)^{|alpha|} alpha cdot d_nabla omega. $$
Hope it helps.
P.s: If you want to know where those things came from look for Lie algebroid representations. If I'm not wrong you can find something here.
edited Dec 25 '17 at 18:27
answered Dec 25 '17 at 18:21
PtFPtF
4,04821734
4,04821734
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f838600%2fsplitting-of-the-tangent-bundle-of-a-vector-bundle-and-connections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown