Cauchy problem with specific value of starting point, find limit
$begingroup$
I have the following Cauchy problem:
$$ y' = vert y vert - arctan{e^x} $$
$$ y(0) = y_0 $$
I want to prove that there exists a specific value of $y_0$ such that:
$$ lim_{xtoinfty} y(x) = frac{pi}{2}.$$
I am not too sure how to even start on this, beside saying that f(x,y) is Lipschizt and therefore I have local uniqueness and existence of solution which can be extended globally to $mathbb{R}$. Any help?
ordinary-differential-equations cauchy-problem
$endgroup$
add a comment |
$begingroup$
I have the following Cauchy problem:
$$ y' = vert y vert - arctan{e^x} $$
$$ y(0) = y_0 $$
I want to prove that there exists a specific value of $y_0$ such that:
$$ lim_{xtoinfty} y(x) = frac{pi}{2}.$$
I am not too sure how to even start on this, beside saying that f(x,y) is Lipschizt and therefore I have local uniqueness and existence of solution which can be extended globally to $mathbb{R}$. Any help?
ordinary-differential-equations cauchy-problem
$endgroup$
$begingroup$
As long as $y geq 0$ you can study the linear ODE $y' = y - arctan(e^x)$.
$endgroup$
– Christoph
Jan 29 at 12:10
add a comment |
$begingroup$
I have the following Cauchy problem:
$$ y' = vert y vert - arctan{e^x} $$
$$ y(0) = y_0 $$
I want to prove that there exists a specific value of $y_0$ such that:
$$ lim_{xtoinfty} y(x) = frac{pi}{2}.$$
I am not too sure how to even start on this, beside saying that f(x,y) is Lipschizt and therefore I have local uniqueness and existence of solution which can be extended globally to $mathbb{R}$. Any help?
ordinary-differential-equations cauchy-problem
$endgroup$
I have the following Cauchy problem:
$$ y' = vert y vert - arctan{e^x} $$
$$ y(0) = y_0 $$
I want to prove that there exists a specific value of $y_0$ such that:
$$ lim_{xtoinfty} y(x) = frac{pi}{2}.$$
I am not too sure how to even start on this, beside saying that f(x,y) is Lipschizt and therefore I have local uniqueness and existence of solution which can be extended globally to $mathbb{R}$. Any help?
ordinary-differential-equations cauchy-problem
ordinary-differential-equations cauchy-problem
edited Jan 29 at 11:44


Julián Aguirre
69.6k24297
69.6k24297
asked Jan 29 at 10:14
qcc101qcc101
629213
629213
$begingroup$
As long as $y geq 0$ you can study the linear ODE $y' = y - arctan(e^x)$.
$endgroup$
– Christoph
Jan 29 at 12:10
add a comment |
$begingroup$
As long as $y geq 0$ you can study the linear ODE $y' = y - arctan(e^x)$.
$endgroup$
– Christoph
Jan 29 at 12:10
$begingroup$
As long as $y geq 0$ you can study the linear ODE $y' = y - arctan(e^x)$.
$endgroup$
– Christoph
Jan 29 at 12:10
$begingroup$
As long as $y geq 0$ you can study the linear ODE $y' = y - arctan(e^x)$.
$endgroup$
– Christoph
Jan 29 at 12:10
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $y($ be a solution and suppose that $y(x)=0$ for some $xge0$. Then $y'(x)<0$. This implies that once a solution takes a negative value, it remains negative, Thus, the only way to solve the problem is to look for positive solutions. This means solving the linear equation $y'=y-arctan(e^x)$. Its solution is
$$
y(x)=e^xBigl(y_0-int_0^xe^{-t}arctan(e^t),dtBigr).
$$
This will be positive if and only if
$$
y_0ge int_0^infty e^{-t}arctan(e^t),dt=a.
$$
If $y_0>a$, then $lim_{xtoinfty}y(x)=infty$. If $y_0=a$, then
$$
lim_{xtoinfty}y(x)=lim_{xtoinfty}e^xint_x^infty e^{-t}arctan(e^t),dt=fracpi2.
$$
Note. Although it is not needed for the argument, the actual value of $a$ is
$$
frac{pi+log4}{4}.
$$
$endgroup$
$begingroup$
If $y_0 = a $ wouldn't y(x) be always 0?
$endgroup$
– qcc101
Jan 31 at 10:04
$begingroup$
No. If $x<infty$, then $y_0>int_0^xe^{-t}arctan(e^t),dt$.
$endgroup$
– Julián Aguirre
Jan 31 at 12:30
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092003%2fcauchy-problem-with-specific-value-of-starting-point-find-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $y($ be a solution and suppose that $y(x)=0$ for some $xge0$. Then $y'(x)<0$. This implies that once a solution takes a negative value, it remains negative, Thus, the only way to solve the problem is to look for positive solutions. This means solving the linear equation $y'=y-arctan(e^x)$. Its solution is
$$
y(x)=e^xBigl(y_0-int_0^xe^{-t}arctan(e^t),dtBigr).
$$
This will be positive if and only if
$$
y_0ge int_0^infty e^{-t}arctan(e^t),dt=a.
$$
If $y_0>a$, then $lim_{xtoinfty}y(x)=infty$. If $y_0=a$, then
$$
lim_{xtoinfty}y(x)=lim_{xtoinfty}e^xint_x^infty e^{-t}arctan(e^t),dt=fracpi2.
$$
Note. Although it is not needed for the argument, the actual value of $a$ is
$$
frac{pi+log4}{4}.
$$
$endgroup$
$begingroup$
If $y_0 = a $ wouldn't y(x) be always 0?
$endgroup$
– qcc101
Jan 31 at 10:04
$begingroup$
No. If $x<infty$, then $y_0>int_0^xe^{-t}arctan(e^t),dt$.
$endgroup$
– Julián Aguirre
Jan 31 at 12:30
add a comment |
$begingroup$
Let $y($ be a solution and suppose that $y(x)=0$ for some $xge0$. Then $y'(x)<0$. This implies that once a solution takes a negative value, it remains negative, Thus, the only way to solve the problem is to look for positive solutions. This means solving the linear equation $y'=y-arctan(e^x)$. Its solution is
$$
y(x)=e^xBigl(y_0-int_0^xe^{-t}arctan(e^t),dtBigr).
$$
This will be positive if and only if
$$
y_0ge int_0^infty e^{-t}arctan(e^t),dt=a.
$$
If $y_0>a$, then $lim_{xtoinfty}y(x)=infty$. If $y_0=a$, then
$$
lim_{xtoinfty}y(x)=lim_{xtoinfty}e^xint_x^infty e^{-t}arctan(e^t),dt=fracpi2.
$$
Note. Although it is not needed for the argument, the actual value of $a$ is
$$
frac{pi+log4}{4}.
$$
$endgroup$
$begingroup$
If $y_0 = a $ wouldn't y(x) be always 0?
$endgroup$
– qcc101
Jan 31 at 10:04
$begingroup$
No. If $x<infty$, then $y_0>int_0^xe^{-t}arctan(e^t),dt$.
$endgroup$
– Julián Aguirre
Jan 31 at 12:30
add a comment |
$begingroup$
Let $y($ be a solution and suppose that $y(x)=0$ for some $xge0$. Then $y'(x)<0$. This implies that once a solution takes a negative value, it remains negative, Thus, the only way to solve the problem is to look for positive solutions. This means solving the linear equation $y'=y-arctan(e^x)$. Its solution is
$$
y(x)=e^xBigl(y_0-int_0^xe^{-t}arctan(e^t),dtBigr).
$$
This will be positive if and only if
$$
y_0ge int_0^infty e^{-t}arctan(e^t),dt=a.
$$
If $y_0>a$, then $lim_{xtoinfty}y(x)=infty$. If $y_0=a$, then
$$
lim_{xtoinfty}y(x)=lim_{xtoinfty}e^xint_x^infty e^{-t}arctan(e^t),dt=fracpi2.
$$
Note. Although it is not needed for the argument, the actual value of $a$ is
$$
frac{pi+log4}{4}.
$$
$endgroup$
Let $y($ be a solution and suppose that $y(x)=0$ for some $xge0$. Then $y'(x)<0$. This implies that once a solution takes a negative value, it remains negative, Thus, the only way to solve the problem is to look for positive solutions. This means solving the linear equation $y'=y-arctan(e^x)$. Its solution is
$$
y(x)=e^xBigl(y_0-int_0^xe^{-t}arctan(e^t),dtBigr).
$$
This will be positive if and only if
$$
y_0ge int_0^infty e^{-t}arctan(e^t),dt=a.
$$
If $y_0>a$, then $lim_{xtoinfty}y(x)=infty$. If $y_0=a$, then
$$
lim_{xtoinfty}y(x)=lim_{xtoinfty}e^xint_x^infty e^{-t}arctan(e^t),dt=fracpi2.
$$
Note. Although it is not needed for the argument, the actual value of $a$ is
$$
frac{pi+log4}{4}.
$$
answered Jan 29 at 21:01


Julián AguirreJulián Aguirre
69.6k24297
69.6k24297
$begingroup$
If $y_0 = a $ wouldn't y(x) be always 0?
$endgroup$
– qcc101
Jan 31 at 10:04
$begingroup$
No. If $x<infty$, then $y_0>int_0^xe^{-t}arctan(e^t),dt$.
$endgroup$
– Julián Aguirre
Jan 31 at 12:30
add a comment |
$begingroup$
If $y_0 = a $ wouldn't y(x) be always 0?
$endgroup$
– qcc101
Jan 31 at 10:04
$begingroup$
No. If $x<infty$, then $y_0>int_0^xe^{-t}arctan(e^t),dt$.
$endgroup$
– Julián Aguirre
Jan 31 at 12:30
$begingroup$
If $y_0 = a $ wouldn't y(x) be always 0?
$endgroup$
– qcc101
Jan 31 at 10:04
$begingroup$
If $y_0 = a $ wouldn't y(x) be always 0?
$endgroup$
– qcc101
Jan 31 at 10:04
$begingroup$
No. If $x<infty$, then $y_0>int_0^xe^{-t}arctan(e^t),dt$.
$endgroup$
– Julián Aguirre
Jan 31 at 12:30
$begingroup$
No. If $x<infty$, then $y_0>int_0^xe^{-t}arctan(e^t),dt$.
$endgroup$
– Julián Aguirre
Jan 31 at 12:30
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092003%2fcauchy-problem-with-specific-value-of-starting-point-find-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
As long as $y geq 0$ you can study the linear ODE $y' = y - arctan(e^x)$.
$endgroup$
– Christoph
Jan 29 at 12:10