Neep help justifying a vector relation given in a question
$begingroup$
i'm trying to do a question for which I was given the following line equations:
$underline r = underline a + lambda underline u$
$underline r' = underline a' + lambda' underline u'$
They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.
$lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$
I know that
$lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $
but cant get any further.
linear-algebra geometry vectors
$endgroup$
add a comment |
$begingroup$
i'm trying to do a question for which I was given the following line equations:
$underline r = underline a + lambda underline u$
$underline r' = underline a' + lambda' underline u'$
They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.
$lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$
I know that
$lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $
but cant get any further.
linear-algebra geometry vectors
$endgroup$
add a comment |
$begingroup$
i'm trying to do a question for which I was given the following line equations:
$underline r = underline a + lambda underline u$
$underline r' = underline a' + lambda' underline u'$
They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.
$lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$
I know that
$lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $
but cant get any further.
linear-algebra geometry vectors
$endgroup$
i'm trying to do a question for which I was given the following line equations:
$underline r = underline a + lambda underline u$
$underline r' = underline a' + lambda' underline u'$
They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.
$lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$
I know that
$lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $
but cant get any further.
linear-algebra geometry vectors
linear-algebra geometry vectors
asked Jan 29 at 12:52
A. PavlenkoA. Pavlenko
123
123
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You should be familiar with some basic properties of the cross product. Especially the identity
$$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$
As can be seen, for instance from:
$$
begin{aligned}
|| mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
&= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
&= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
&= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
&= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
end{aligned}
$$
Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and
$$
mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092131%2fneep-help-justifying-a-vector-relation-given-in-a-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You should be familiar with some basic properties of the cross product. Especially the identity
$$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$
As can be seen, for instance from:
$$
begin{aligned}
|| mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
&= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
&= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
&= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
&= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
end{aligned}
$$
Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and
$$
mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
$$
$endgroup$
add a comment |
$begingroup$
You should be familiar with some basic properties of the cross product. Especially the identity
$$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$
As can be seen, for instance from:
$$
begin{aligned}
|| mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
&= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
&= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
&= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
&= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
end{aligned}
$$
Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and
$$
mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
$$
$endgroup$
add a comment |
$begingroup$
You should be familiar with some basic properties of the cross product. Especially the identity
$$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$
As can be seen, for instance from:
$$
begin{aligned}
|| mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
&= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
&= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
&= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
&= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
end{aligned}
$$
Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and
$$
mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
$$
$endgroup$
You should be familiar with some basic properties of the cross product. Especially the identity
$$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$
As can be seen, for instance from:
$$
begin{aligned}
|| mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
&= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
&= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
&= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
&= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
end{aligned}
$$
Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and
$$
mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
$$
answered Jan 29 at 14:06
jgbjgb
14813
14813
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092131%2fneep-help-justifying-a-vector-relation-given-in-a-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown