Neep help justifying a vector relation given in a question












0












$begingroup$


i'm trying to do a question for which I was given the following line equations:



$underline r = underline a + lambda underline u$



$underline r' = underline a' + lambda' underline u'$



They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.



$lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$



I know that



$lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $



but cant get any further.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    i'm trying to do a question for which I was given the following line equations:



    $underline r = underline a + lambda underline u$



    $underline r' = underline a' + lambda' underline u'$



    They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.



    $lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$



    I know that



    $lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $



    but cant get any further.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      i'm trying to do a question for which I was given the following line equations:



      $underline r = underline a + lambda underline u$



      $underline r' = underline a' + lambda' underline u'$



      They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.



      $lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$



      I know that



      $lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $



      but cant get any further.










      share|cite|improve this question









      $endgroup$




      i'm trying to do a question for which I was given the following line equations:



      $underline r = underline a + lambda underline u$



      $underline r' = underline a' + lambda' underline u'$



      They then gave me this relationship without any justification, i've been trying to get my head around it but have not had much luck.



      $lvert underline r-underline r'rvert^2lvert underline u times underline u'rvert^2=lvert (underline a - underline a') cdot (underline u times underline u')lvert^2+lvert (underline r - underline r') times (underline u times underline u')lvert^2$



      I know that



      $lvert (underline r - underline r') times (underline u times underline u')lvert = lvert underline r-underline r'rvertlvert underline u times underline u'rvertsin theta $



      but cant get any further.







      linear-algebra geometry vectors






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 29 at 12:52









      A. PavlenkoA. Pavlenko

      123




      123






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You should be familiar with some basic properties of the cross product. Especially the identity



          $$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$



          As can be seen, for instance from:



          $$
          begin{aligned}
          || mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
          &= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
          &= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
          &= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
          &= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
          end{aligned}
          $$



          Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and



          $$
          mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
          mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
          $$






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092131%2fneep-help-justifying-a-vector-relation-given-in-a-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            You should be familiar with some basic properties of the cross product. Especially the identity



            $$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$



            As can be seen, for instance from:



            $$
            begin{aligned}
            || mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
            &= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
            &= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
            &= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
            &= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
            end{aligned}
            $$



            Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and



            $$
            mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
            mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
            $$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              You should be familiar with some basic properties of the cross product. Especially the identity



              $$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$



              As can be seen, for instance from:



              $$
              begin{aligned}
              || mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
              &= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
              &= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
              &= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
              &= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
              end{aligned}
              $$



              Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and



              $$
              mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
              mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
              $$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                You should be familiar with some basic properties of the cross product. Especially the identity



                $$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$



                As can be seen, for instance from:



                $$
                begin{aligned}
                || mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
                &= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
                &= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
                &= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
                &= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
                end{aligned}
                $$



                Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and



                $$
                mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
                mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
                $$






                share|cite|improve this answer









                $endgroup$



                You should be familiar with some basic properties of the cross product. Especially the identity



                $$ || mathbf{a} times mathbf{b} ||^2 = ||mathbf{a}||^2 , || mathbf{b}||^2 - |mathbf{a} cdot mathbf{b}|^2 $$



                As can be seen, for instance from:



                $$
                begin{aligned}
                || mathbf{a} times mathbf{b} ||^2 & = (mathbf{a} times mathbf{b}) cdot (mathbf{a} times mathbf{b}) \
                &= mathbf{b} cdot ((mathbf{a} times mathbf{b}) times mathbf{a}) \
                &= -mathbf{b} cdot (mathbf{a} times (mathbf{a} times mathbf{b})) \
                &= -mathbf{b} cdot (mathbf{a},(mathbf{a}cdotmathbf{b}) - mathbf{b},(mathbf{a}cdotmathbf{a})) \
                &= ||mathbf{a}||^2,||mathbf{b}||^2 - |mathbf{a}cdotmathbf{b}|^2
                end{aligned}
                $$



                Now, with $mathbf{a} = mathbf{r} - mathbf{r'}$ and $mathbf{b} = mathbf{u} times mathbf{u'}$, use the bilinearity of the inner product and



                $$
                mathbf{r} = mathbf{a} + lambda ,mathbf{u}; ,, mathbf{r'} = mathbf{a'} + lambda' ,mathbf{u'} \
                mathbf{u} cdot (mathbf{u} times mathbf{u'}) = mathbf{u'} cdot (mathbf{u} times mathbf{u'}) = 0
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 29 at 14:06









                jgbjgb

                14813




                14813






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092131%2fneep-help-justifying-a-vector-relation-given-in-a-question%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$