Computing $sum_{k=0}^n{2nchoose 2k}(-1)^ksin^{2k}theta cos^{2n-2k}theta$ using Euler's formula
$begingroup$
Compute the following sum by using Euler's formula, $
e^{i theta} = cos theta + i sin theta$,
$$cos^{2n}theta-{2nchoose 2}cos^{2n-2}theta sin^2theta +...+(-1)^{n-1}{2nchoose 2n-2}cos^2theta sin^{2n-2}theta +(-1)^nsin^{2n}theta$$
I have tried to rewrite the expression as:
$$sum_{k=0}^n{2nchoose 2k}(-1)^ksin^{2k}theta cos^{2n-2k}theta$$
But I have no certain idea about how to continue. Could you give me some hints? Thanks!
trigonometry complex-numbers
$endgroup$
add a comment |
$begingroup$
Compute the following sum by using Euler's formula, $
e^{i theta} = cos theta + i sin theta$,
$$cos^{2n}theta-{2nchoose 2}cos^{2n-2}theta sin^2theta +...+(-1)^{n-1}{2nchoose 2n-2}cos^2theta sin^{2n-2}theta +(-1)^nsin^{2n}theta$$
I have tried to rewrite the expression as:
$$sum_{k=0}^n{2nchoose 2k}(-1)^ksin^{2k}theta cos^{2n-2k}theta$$
But I have no certain idea about how to continue. Could you give me some hints? Thanks!
trigonometry complex-numbers
$endgroup$
add a comment |
$begingroup$
Compute the following sum by using Euler's formula, $
e^{i theta} = cos theta + i sin theta$,
$$cos^{2n}theta-{2nchoose 2}cos^{2n-2}theta sin^2theta +...+(-1)^{n-1}{2nchoose 2n-2}cos^2theta sin^{2n-2}theta +(-1)^nsin^{2n}theta$$
I have tried to rewrite the expression as:
$$sum_{k=0}^n{2nchoose 2k}(-1)^ksin^{2k}theta cos^{2n-2k}theta$$
But I have no certain idea about how to continue. Could you give me some hints? Thanks!
trigonometry complex-numbers
$endgroup$
Compute the following sum by using Euler's formula, $
e^{i theta} = cos theta + i sin theta$,
$$cos^{2n}theta-{2nchoose 2}cos^{2n-2}theta sin^2theta +...+(-1)^{n-1}{2nchoose 2n-2}cos^2theta sin^{2n-2}theta +(-1)^nsin^{2n}theta$$
I have tried to rewrite the expression as:
$$sum_{k=0}^n{2nchoose 2k}(-1)^ksin^{2k}theta cos^{2n-2k}theta$$
But I have no certain idea about how to continue. Could you give me some hints? Thanks!
trigonometry complex-numbers
trigonometry complex-numbers
asked Jan 22 at 18:14
GibbsGibbs
130111
130111
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$(-1)^ksin^{2k}t=(isin t)^{2k}$
$$(cos t+isin t)^{2n}+(cos t-isin t)^{2n}=?$$
$endgroup$
$begingroup$
Well, that's $(e^{it})^{2n}+(e^{-it})^{2n}$... but I don't see clearly what I am supposed to do.
$endgroup$
– Gibbs
Jan 22 at 18:53
$begingroup$
@Gibbs, math.stackexchange.com/questions/1432568/…
$endgroup$
– lab bhattacharjee
Jan 22 at 18:58
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083497%2fcomputing-sum-k-0n2n-choose-2k-1ksin2k-theta-cos2n-2k-theta-us%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$(-1)^ksin^{2k}t=(isin t)^{2k}$
$$(cos t+isin t)^{2n}+(cos t-isin t)^{2n}=?$$
$endgroup$
$begingroup$
Well, that's $(e^{it})^{2n}+(e^{-it})^{2n}$... but I don't see clearly what I am supposed to do.
$endgroup$
– Gibbs
Jan 22 at 18:53
$begingroup$
@Gibbs, math.stackexchange.com/questions/1432568/…
$endgroup$
– lab bhattacharjee
Jan 22 at 18:58
add a comment |
$begingroup$
$(-1)^ksin^{2k}t=(isin t)^{2k}$
$$(cos t+isin t)^{2n}+(cos t-isin t)^{2n}=?$$
$endgroup$
$begingroup$
Well, that's $(e^{it})^{2n}+(e^{-it})^{2n}$... but I don't see clearly what I am supposed to do.
$endgroup$
– Gibbs
Jan 22 at 18:53
$begingroup$
@Gibbs, math.stackexchange.com/questions/1432568/…
$endgroup$
– lab bhattacharjee
Jan 22 at 18:58
add a comment |
$begingroup$
$(-1)^ksin^{2k}t=(isin t)^{2k}$
$$(cos t+isin t)^{2n}+(cos t-isin t)^{2n}=?$$
$endgroup$
$(-1)^ksin^{2k}t=(isin t)^{2k}$
$$(cos t+isin t)^{2n}+(cos t-isin t)^{2n}=?$$
answered Jan 22 at 18:18
lab bhattacharjeelab bhattacharjee
226k15158275
226k15158275
$begingroup$
Well, that's $(e^{it})^{2n}+(e^{-it})^{2n}$... but I don't see clearly what I am supposed to do.
$endgroup$
– Gibbs
Jan 22 at 18:53
$begingroup$
@Gibbs, math.stackexchange.com/questions/1432568/…
$endgroup$
– lab bhattacharjee
Jan 22 at 18:58
add a comment |
$begingroup$
Well, that's $(e^{it})^{2n}+(e^{-it})^{2n}$... but I don't see clearly what I am supposed to do.
$endgroup$
– Gibbs
Jan 22 at 18:53
$begingroup$
@Gibbs, math.stackexchange.com/questions/1432568/…
$endgroup$
– lab bhattacharjee
Jan 22 at 18:58
$begingroup$
Well, that's $(e^{it})^{2n}+(e^{-it})^{2n}$... but I don't see clearly what I am supposed to do.
$endgroup$
– Gibbs
Jan 22 at 18:53
$begingroup$
Well, that's $(e^{it})^{2n}+(e^{-it})^{2n}$... but I don't see clearly what I am supposed to do.
$endgroup$
– Gibbs
Jan 22 at 18:53
$begingroup$
@Gibbs, math.stackexchange.com/questions/1432568/…
$endgroup$
– lab bhattacharjee
Jan 22 at 18:58
$begingroup$
@Gibbs, math.stackexchange.com/questions/1432568/…
$endgroup$
– lab bhattacharjee
Jan 22 at 18:58
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083497%2fcomputing-sum-k-0n2n-choose-2k-1ksin2k-theta-cos2n-2k-theta-us%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown