Convergence of $a_k=sum_{k=5}^{+infty}(-1)^k({3over2})^{-k}(k^2+5)sin(k+5)$
$begingroup$
Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$
So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?
calculus sequences-and-series power-series absolute-convergence
$endgroup$
add a comment |
$begingroup$
Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$
So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?
calculus sequences-and-series power-series absolute-convergence
$endgroup$
2
$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35
$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37
$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49
$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51
$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04
add a comment |
$begingroup$
Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$
So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?
calculus sequences-and-series power-series absolute-convergence
$endgroup$
Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$
So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?
calculus sequences-and-series power-series absolute-convergence
calculus sequences-and-series power-series absolute-convergence
asked Jan 29 at 7:26


Turan NasibliTuran Nasibli
846
846
2
$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35
$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37
$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49
$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51
$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04
add a comment |
2
$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35
$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37
$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49
$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51
$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04
2
2
$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35
$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35
$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37
$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37
$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49
$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49
$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51
$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51
$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04
$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091881%2fconvergence-of-a-k-sum-k-5-infty-1k3-over2-kk25-sink5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091881%2fconvergence-of-a-k-sum-k-5-infty-1k3-over2-kk25-sink5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35
$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37
$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49
$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51
$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04