Convergence of $a_k=sum_{k=5}^{+infty}(-1)^k({3over2})^{-k}(k^2+5)sin(k+5)$












0












$begingroup$


Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$

So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
    $endgroup$
    – GReyes
    Jan 29 at 7:35










  • $begingroup$
    @GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:37












  • $begingroup$
    I think your sum does converge.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 29 at 7:49










  • $begingroup$
    @Dr.SonnhardGraubner it does,for sure.
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:51










  • $begingroup$
    @TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
    $endgroup$
    – GReyes
    Jan 29 at 20:04
















0












$begingroup$


Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$

So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
    $endgroup$
    – GReyes
    Jan 29 at 7:35










  • $begingroup$
    @GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:37












  • $begingroup$
    I think your sum does converge.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 29 at 7:49










  • $begingroup$
    @Dr.SonnhardGraubner it does,for sure.
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:51










  • $begingroup$
    @TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
    $endgroup$
    – GReyes
    Jan 29 at 20:04














0












0








0





$begingroup$


Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$

So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?










share|cite|improve this question









$endgroup$




Firstly, $lim_{k to +infty}a_k=0$,so necessary condition for convergence is satisfied.If we start to study absolute convergence we have : $$a_k=({3over2})^{-k}(k^2+5)|sin(k+5)|leq({3over2})^{-k}(k^2+5)sim({3over2})^{-k}(k^2)=frac{k^2}{({3over2})^{k}}$$

So if we apply ratio test : $$lim_{kto+infty}frac{(k+1)^2({3over2})^k}{({3over2})^k({3over2})(k^2)}={2over3}lt1$$ And $a_k$ is absolutely and simply convergent.Is this approach correct?







calculus sequences-and-series power-series absolute-convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 29 at 7:26









Turan NasibliTuran Nasibli

846




846








  • 2




    $begingroup$
    Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
    $endgroup$
    – GReyes
    Jan 29 at 7:35










  • $begingroup$
    @GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:37












  • $begingroup$
    I think your sum does converge.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 29 at 7:49










  • $begingroup$
    @Dr.SonnhardGraubner it does,for sure.
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:51










  • $begingroup$
    @TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
    $endgroup$
    – GReyes
    Jan 29 at 20:04














  • 2




    $begingroup$
    Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
    $endgroup$
    – GReyes
    Jan 29 at 7:35










  • $begingroup$
    @GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:37












  • $begingroup$
    I think your sum does converge.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 29 at 7:49










  • $begingroup$
    @Dr.SonnhardGraubner it does,for sure.
    $endgroup$
    – Turan Nasibli
    Jan 29 at 7:51










  • $begingroup$
    @TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
    $endgroup$
    – GReyes
    Jan 29 at 20:04








2




2




$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35




$begingroup$
Yes, this is correct. You could have used plain comparison, since $sin(k+5)$ is bounded and $(3/2)^{-k}$ goes to zero faster than, say, $k^{-4}$.
$endgroup$
– GReyes
Jan 29 at 7:35












$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37






$begingroup$
@GReyes what exactly our comparison function would look like?Probably ${k^2over k^4}={1over k^2}$?
$endgroup$
– Turan Nasibli
Jan 29 at 7:37














$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49




$begingroup$
I think your sum does converge.
$endgroup$
– Dr. Sonnhard Graubner
Jan 29 at 7:49












$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51




$begingroup$
@Dr.SonnhardGraubner it does,for sure.
$endgroup$
– Turan Nasibli
Jan 29 at 7:51












$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04




$begingroup$
@TuranNəsibli Yes, you are right. For large enough $k$, $(3/2)^{-k}le k^{-4}$ and $sin(k+5)le 1$, therefore your $|a_k|le 1/k^2$.
$endgroup$
– GReyes
Jan 29 at 20:04










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091881%2fconvergence-of-a-k-sum-k-5-infty-1k3-over2-kk25-sink5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091881%2fconvergence-of-a-k-sum-k-5-infty-1k3-over2-kk25-sink5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

How to fix TextFormField cause rebuild widget in Flutter