Formal construction of the Cantor set $K$ and determination of $[0,1]setminus K.$
$begingroup$
Let $J_{0,1}:=[0,1]$.
Step 1. We remove the central open interval $I_{0,1}=big(frac{1}{3},frac{2}{3}big)$. We denote with $J_{1,1}:=big[0,frac{1}{3}big]$ and with $J_{1,2}:=big[frac{2}{3},1big]$.
We define $K_1:=J_{1,1}cup J_{1,2}$ then $complement{K_1}=I_{0,1}.$
Step 2. We remove from $J_{1,1}$ and $J_{1,2}$ the central open interval of length $frac{1}{9}$. Then we define what remains with $K_2:=J_{2,1}cup J_{2,2}cup J_{2,3}cup J_{2,4}$, where $J_{2,1}=big[0,frac{1}{9}big]$, $J_{2,2}=big[frac{2}{9},frac{1}{3}big]$, $J_{2,3}=big[frac{2}{3},frac{7}{9}big]$, $J_{2,4}=big[frac{8}{9}, 1big]$.
At this point we define with $I_{1,1}=big(frac{1}{9}, frac{2}{9}big)$, $I_{1,2}=big(frac{7}{9},frac{8}{9}big)$ the two open interval just removed. Therefore, $complement{K_2}=complement{K_1}cup big(I_{1,1}cup I_{1,2}big)$
At the end of step $n$ we will have $2^n$ close interval $J_{n,k}$ for $k=1,cdots, 2^n$ of length $1/3^n.$
For all $ninmathbb{N}$ we define $$K_{n}:=bigcup_{k=1}^{2^n} J_{n,k}$$
We define the Cantor set $K$ in the follow way $$K:=bigcap_{n=1}^{+infty} K_n.$$
In general, as discussed above, $$complement{K_n}= complement{K_{n-1}}cupbigcup_{k=1}^{2^n/2} I_{n-1,k}tag1$$
Question 1. It's correct (1)?
We determine,
$$[0,1]setminus K=[0,1]cap bigg[bigcup_{n=1}^{+infty}complement{K_{n-1}}cup bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}bigg]tag2$$
Question 2. How can I proceed in (2)? I would like to prove that $$[0,1]setminus K =bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n}I_{n,k}.$$
My answer at question 2.
begin{equation}
begin{split}
[0,1]setminus K &= [0,1]capbigg[bigcup_{n=1}^{+infty}complement{K_n}bigg]\
=&bigcup_{n=1}^{+infty} complement{K_n}\
=&bigcup_{n=1}^{+infty}complement{K_{n-1}}cupbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k}\
color{BLUE}{=}& bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}\
color{RED}{=}&bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n} I_{n,k}.
end{split}
end{equation}
For the blue equality I used the fact that $$bigcup_{n=1}^{+infty}complement{K_{n-1}}subseteqbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k} $$
and the red equality it is a simple rewriting of the indexes.
Question 3. It's correct my answer?
Thanks!
real-analysis measure-theory lebesgue-measure cantor-set
$endgroup$
add a comment |
$begingroup$
Let $J_{0,1}:=[0,1]$.
Step 1. We remove the central open interval $I_{0,1}=big(frac{1}{3},frac{2}{3}big)$. We denote with $J_{1,1}:=big[0,frac{1}{3}big]$ and with $J_{1,2}:=big[frac{2}{3},1big]$.
We define $K_1:=J_{1,1}cup J_{1,2}$ then $complement{K_1}=I_{0,1}.$
Step 2. We remove from $J_{1,1}$ and $J_{1,2}$ the central open interval of length $frac{1}{9}$. Then we define what remains with $K_2:=J_{2,1}cup J_{2,2}cup J_{2,3}cup J_{2,4}$, where $J_{2,1}=big[0,frac{1}{9}big]$, $J_{2,2}=big[frac{2}{9},frac{1}{3}big]$, $J_{2,3}=big[frac{2}{3},frac{7}{9}big]$, $J_{2,4}=big[frac{8}{9}, 1big]$.
At this point we define with $I_{1,1}=big(frac{1}{9}, frac{2}{9}big)$, $I_{1,2}=big(frac{7}{9},frac{8}{9}big)$ the two open interval just removed. Therefore, $complement{K_2}=complement{K_1}cup big(I_{1,1}cup I_{1,2}big)$
At the end of step $n$ we will have $2^n$ close interval $J_{n,k}$ for $k=1,cdots, 2^n$ of length $1/3^n.$
For all $ninmathbb{N}$ we define $$K_{n}:=bigcup_{k=1}^{2^n} J_{n,k}$$
We define the Cantor set $K$ in the follow way $$K:=bigcap_{n=1}^{+infty} K_n.$$
In general, as discussed above, $$complement{K_n}= complement{K_{n-1}}cupbigcup_{k=1}^{2^n/2} I_{n-1,k}tag1$$
Question 1. It's correct (1)?
We determine,
$$[0,1]setminus K=[0,1]cap bigg[bigcup_{n=1}^{+infty}complement{K_{n-1}}cup bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}bigg]tag2$$
Question 2. How can I proceed in (2)? I would like to prove that $$[0,1]setminus K =bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n}I_{n,k}.$$
My answer at question 2.
begin{equation}
begin{split}
[0,1]setminus K &= [0,1]capbigg[bigcup_{n=1}^{+infty}complement{K_n}bigg]\
=&bigcup_{n=1}^{+infty} complement{K_n}\
=&bigcup_{n=1}^{+infty}complement{K_{n-1}}cupbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k}\
color{BLUE}{=}& bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}\
color{RED}{=}&bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n} I_{n,k}.
end{split}
end{equation}
For the blue equality I used the fact that $$bigcup_{n=1}^{+infty}complement{K_{n-1}}subseteqbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k} $$
and the red equality it is a simple rewriting of the indexes.
Question 3. It's correct my answer?
Thanks!
real-analysis measure-theory lebesgue-measure cantor-set
$endgroup$
add a comment |
$begingroup$
Let $J_{0,1}:=[0,1]$.
Step 1. We remove the central open interval $I_{0,1}=big(frac{1}{3},frac{2}{3}big)$. We denote with $J_{1,1}:=big[0,frac{1}{3}big]$ and with $J_{1,2}:=big[frac{2}{3},1big]$.
We define $K_1:=J_{1,1}cup J_{1,2}$ then $complement{K_1}=I_{0,1}.$
Step 2. We remove from $J_{1,1}$ and $J_{1,2}$ the central open interval of length $frac{1}{9}$. Then we define what remains with $K_2:=J_{2,1}cup J_{2,2}cup J_{2,3}cup J_{2,4}$, where $J_{2,1}=big[0,frac{1}{9}big]$, $J_{2,2}=big[frac{2}{9},frac{1}{3}big]$, $J_{2,3}=big[frac{2}{3},frac{7}{9}big]$, $J_{2,4}=big[frac{8}{9}, 1big]$.
At this point we define with $I_{1,1}=big(frac{1}{9}, frac{2}{9}big)$, $I_{1,2}=big(frac{7}{9},frac{8}{9}big)$ the two open interval just removed. Therefore, $complement{K_2}=complement{K_1}cup big(I_{1,1}cup I_{1,2}big)$
At the end of step $n$ we will have $2^n$ close interval $J_{n,k}$ for $k=1,cdots, 2^n$ of length $1/3^n.$
For all $ninmathbb{N}$ we define $$K_{n}:=bigcup_{k=1}^{2^n} J_{n,k}$$
We define the Cantor set $K$ in the follow way $$K:=bigcap_{n=1}^{+infty} K_n.$$
In general, as discussed above, $$complement{K_n}= complement{K_{n-1}}cupbigcup_{k=1}^{2^n/2} I_{n-1,k}tag1$$
Question 1. It's correct (1)?
We determine,
$$[0,1]setminus K=[0,1]cap bigg[bigcup_{n=1}^{+infty}complement{K_{n-1}}cup bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}bigg]tag2$$
Question 2. How can I proceed in (2)? I would like to prove that $$[0,1]setminus K =bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n}I_{n,k}.$$
My answer at question 2.
begin{equation}
begin{split}
[0,1]setminus K &= [0,1]capbigg[bigcup_{n=1}^{+infty}complement{K_n}bigg]\
=&bigcup_{n=1}^{+infty} complement{K_n}\
=&bigcup_{n=1}^{+infty}complement{K_{n-1}}cupbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k}\
color{BLUE}{=}& bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}\
color{RED}{=}&bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n} I_{n,k}.
end{split}
end{equation}
For the blue equality I used the fact that $$bigcup_{n=1}^{+infty}complement{K_{n-1}}subseteqbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k} $$
and the red equality it is a simple rewriting of the indexes.
Question 3. It's correct my answer?
Thanks!
real-analysis measure-theory lebesgue-measure cantor-set
$endgroup$
Let $J_{0,1}:=[0,1]$.
Step 1. We remove the central open interval $I_{0,1}=big(frac{1}{3},frac{2}{3}big)$. We denote with $J_{1,1}:=big[0,frac{1}{3}big]$ and with $J_{1,2}:=big[frac{2}{3},1big]$.
We define $K_1:=J_{1,1}cup J_{1,2}$ then $complement{K_1}=I_{0,1}.$
Step 2. We remove from $J_{1,1}$ and $J_{1,2}$ the central open interval of length $frac{1}{9}$. Then we define what remains with $K_2:=J_{2,1}cup J_{2,2}cup J_{2,3}cup J_{2,4}$, where $J_{2,1}=big[0,frac{1}{9}big]$, $J_{2,2}=big[frac{2}{9},frac{1}{3}big]$, $J_{2,3}=big[frac{2}{3},frac{7}{9}big]$, $J_{2,4}=big[frac{8}{9}, 1big]$.
At this point we define with $I_{1,1}=big(frac{1}{9}, frac{2}{9}big)$, $I_{1,2}=big(frac{7}{9},frac{8}{9}big)$ the two open interval just removed. Therefore, $complement{K_2}=complement{K_1}cup big(I_{1,1}cup I_{1,2}big)$
At the end of step $n$ we will have $2^n$ close interval $J_{n,k}$ for $k=1,cdots, 2^n$ of length $1/3^n.$
For all $ninmathbb{N}$ we define $$K_{n}:=bigcup_{k=1}^{2^n} J_{n,k}$$
We define the Cantor set $K$ in the follow way $$K:=bigcap_{n=1}^{+infty} K_n.$$
In general, as discussed above, $$complement{K_n}= complement{K_{n-1}}cupbigcup_{k=1}^{2^n/2} I_{n-1,k}tag1$$
Question 1. It's correct (1)?
We determine,
$$[0,1]setminus K=[0,1]cap bigg[bigcup_{n=1}^{+infty}complement{K_{n-1}}cup bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}bigg]tag2$$
Question 2. How can I proceed in (2)? I would like to prove that $$[0,1]setminus K =bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n}I_{n,k}.$$
My answer at question 2.
begin{equation}
begin{split}
[0,1]setminus K &= [0,1]capbigg[bigcup_{n=1}^{+infty}complement{K_n}bigg]\
=&bigcup_{n=1}^{+infty} complement{K_n}\
=&bigcup_{n=1}^{+infty}complement{K_{n-1}}cupbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k}\
color{BLUE}{=}& bigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2} I_{n-1,k}\
color{RED}{=}&bigcup_{n=0}^{+infty}bigcup_{k=1}^{2^n} I_{n,k}.
end{split}
end{equation}
For the blue equality I used the fact that $$bigcup_{n=1}^{+infty}complement{K_{n-1}}subseteqbigcup_{n=1}^{+infty}bigcup_{k=1}^{2^n/2}I_{n-1,k} $$
and the red equality it is a simple rewriting of the indexes.
Question 3. It's correct my answer?
Thanks!
real-analysis measure-theory lebesgue-measure cantor-set
real-analysis measure-theory lebesgue-measure cantor-set
edited Jan 22 at 21:38
Jack J.
asked Jan 22 at 16:47
Jack J.Jack J.
3492419
3492419
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083396%2fformal-construction-of-the-cantor-set-k-and-determination-of-0-1-setminus-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083396%2fformal-construction-of-the-cantor-set-k-and-determination-of-0-1-setminus-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown