Fourier Restriction: extension operator identity












1












$begingroup$


Consider the extension operator:
$$
Eg(x)=int_S g(xi)e^{2pi i xcdot xi}dsigma(xi).
$$

For simplicity we consider the 2D-case, where $S$ is the paraboloid $ximapsto xi^2$, $xiin [-1,1]$. (We will frequently use an abuse of notation: $g(xi_1)=g(xi_1,xi_1^2)=g(xi)$, where $xi_1in [-1,1]$ and $xiin S$.)



We know $EE^*f=f*widehat {dsigma}$. But what is $E^*E$? I claim that $E^*E=I$, and here is my formal computation.
begin{align*}
Eg(x)
&=int_{-1}^1 g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_1^2)}J(xi_1)dxi_1\
&=int_{-1}^1 int_{mathbb R} delta_0(xi_1^2-xi_2)g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_2)}J(xi_1)dxi_2dxi_1.
end{align*}

Hence, formally,
$$
widehat {Eg}(xi_1,xi_2)=g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)
$$



Thus $widehat {Eg}$ is a distribution in $mathbb R^2$ supported on the surface $S$, in the sense that if $hin C_c^infty(mathbb R^2)$, then
begin{align*}
widehat {Eg}(h)
&=int_{mathbb R^2} g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)h(xi_1,xi_2)dxi_2dxi_1\
&=int_{mathbb R} g(xi_1) J(xi_1)h(xi_1,xi_1^2)dxi_1\
&=int_{S} g(xi)h(xi)dsigma(xi).
end{align*}

Then $E^*Eg$ is the restriction of $widehat {Eg}$ to $S$, so $E^*Eg$ is exactly the function $g$ defined on $S$. In other words, $E^*E=I$.



The place I am not sure of is the last line, because I do not know in general, how I could restrict a distribution to a submanifold.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Consider the extension operator:
    $$
    Eg(x)=int_S g(xi)e^{2pi i xcdot xi}dsigma(xi).
    $$

    For simplicity we consider the 2D-case, where $S$ is the paraboloid $ximapsto xi^2$, $xiin [-1,1]$. (We will frequently use an abuse of notation: $g(xi_1)=g(xi_1,xi_1^2)=g(xi)$, where $xi_1in [-1,1]$ and $xiin S$.)



    We know $EE^*f=f*widehat {dsigma}$. But what is $E^*E$? I claim that $E^*E=I$, and here is my formal computation.
    begin{align*}
    Eg(x)
    &=int_{-1}^1 g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_1^2)}J(xi_1)dxi_1\
    &=int_{-1}^1 int_{mathbb R} delta_0(xi_1^2-xi_2)g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_2)}J(xi_1)dxi_2dxi_1.
    end{align*}

    Hence, formally,
    $$
    widehat {Eg}(xi_1,xi_2)=g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)
    $$



    Thus $widehat {Eg}$ is a distribution in $mathbb R^2$ supported on the surface $S$, in the sense that if $hin C_c^infty(mathbb R^2)$, then
    begin{align*}
    widehat {Eg}(h)
    &=int_{mathbb R^2} g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)h(xi_1,xi_2)dxi_2dxi_1\
    &=int_{mathbb R} g(xi_1) J(xi_1)h(xi_1,xi_1^2)dxi_1\
    &=int_{S} g(xi)h(xi)dsigma(xi).
    end{align*}

    Then $E^*Eg$ is the restriction of $widehat {Eg}$ to $S$, so $E^*Eg$ is exactly the function $g$ defined on $S$. In other words, $E^*E=I$.



    The place I am not sure of is the last line, because I do not know in general, how I could restrict a distribution to a submanifold.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Consider the extension operator:
      $$
      Eg(x)=int_S g(xi)e^{2pi i xcdot xi}dsigma(xi).
      $$

      For simplicity we consider the 2D-case, where $S$ is the paraboloid $ximapsto xi^2$, $xiin [-1,1]$. (We will frequently use an abuse of notation: $g(xi_1)=g(xi_1,xi_1^2)=g(xi)$, where $xi_1in [-1,1]$ and $xiin S$.)



      We know $EE^*f=f*widehat {dsigma}$. But what is $E^*E$? I claim that $E^*E=I$, and here is my formal computation.
      begin{align*}
      Eg(x)
      &=int_{-1}^1 g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_1^2)}J(xi_1)dxi_1\
      &=int_{-1}^1 int_{mathbb R} delta_0(xi_1^2-xi_2)g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_2)}J(xi_1)dxi_2dxi_1.
      end{align*}

      Hence, formally,
      $$
      widehat {Eg}(xi_1,xi_2)=g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)
      $$



      Thus $widehat {Eg}$ is a distribution in $mathbb R^2$ supported on the surface $S$, in the sense that if $hin C_c^infty(mathbb R^2)$, then
      begin{align*}
      widehat {Eg}(h)
      &=int_{mathbb R^2} g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)h(xi_1,xi_2)dxi_2dxi_1\
      &=int_{mathbb R} g(xi_1) J(xi_1)h(xi_1,xi_1^2)dxi_1\
      &=int_{S} g(xi)h(xi)dsigma(xi).
      end{align*}

      Then $E^*Eg$ is the restriction of $widehat {Eg}$ to $S$, so $E^*Eg$ is exactly the function $g$ defined on $S$. In other words, $E^*E=I$.



      The place I am not sure of is the last line, because I do not know in general, how I could restrict a distribution to a submanifold.










      share|cite|improve this question









      $endgroup$




      Consider the extension operator:
      $$
      Eg(x)=int_S g(xi)e^{2pi i xcdot xi}dsigma(xi).
      $$

      For simplicity we consider the 2D-case, where $S$ is the paraboloid $ximapsto xi^2$, $xiin [-1,1]$. (We will frequently use an abuse of notation: $g(xi_1)=g(xi_1,xi_1^2)=g(xi)$, where $xi_1in [-1,1]$ and $xiin S$.)



      We know $EE^*f=f*widehat {dsigma}$. But what is $E^*E$? I claim that $E^*E=I$, and here is my formal computation.
      begin{align*}
      Eg(x)
      &=int_{-1}^1 g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_1^2)}J(xi_1)dxi_1\
      &=int_{-1}^1 int_{mathbb R} delta_0(xi_1^2-xi_2)g(xi_1)e^{2pi i (x_1,x_2)cdot (xi_1,xi_2)}J(xi_1)dxi_2dxi_1.
      end{align*}

      Hence, formally,
      $$
      widehat {Eg}(xi_1,xi_2)=g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)
      $$



      Thus $widehat {Eg}$ is a distribution in $mathbb R^2$ supported on the surface $S$, in the sense that if $hin C_c^infty(mathbb R^2)$, then
      begin{align*}
      widehat {Eg}(h)
      &=int_{mathbb R^2} g(xi_1)J(xi_1)delta_0(xi^2_1-xi_2)h(xi_1,xi_2)dxi_2dxi_1\
      &=int_{mathbb R} g(xi_1) J(xi_1)h(xi_1,xi_1^2)dxi_1\
      &=int_{S} g(xi)h(xi)dsigma(xi).
      end{align*}

      Then $E^*Eg$ is the restriction of $widehat {Eg}$ to $S$, so $E^*Eg$ is exactly the function $g$ defined on $S$. In other words, $E^*E=I$.



      The place I am not sure of is the last line, because I do not know in general, how I could restrict a distribution to a submanifold.







      distribution-theory harmonic-analysis fourier-restriction






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 29 at 6:12









      Dong LiDong Li

      795413




      795413






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091812%2ffourier-restriction-extension-operator-identity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091812%2ffourier-restriction-extension-operator-identity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith