How to prove that $cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$
$begingroup$
How to prove this trigonometric identities ?
$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$
Thank you.
trigonometry
$endgroup$
add a comment |
$begingroup$
How to prove this trigonometric identities ?
$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$
Thank you.
trigonometry
$endgroup$
$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26
add a comment |
$begingroup$
How to prove this trigonometric identities ?
$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$
Thank you.
trigonometry
$endgroup$
How to prove this trigonometric identities ?
$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$
Thank you.
trigonometry
trigonometry
asked Feb 13 '15 at 10:19
kongkong
27528
27528
$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26
add a comment |
$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26
$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26
$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.
$endgroup$
$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28
$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35
add a comment |
$begingroup$
$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$
Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$
( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)
which needs to be $=sindfracpi{18}cotdfrac{2pi}9$
which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$
as $dfrac{4pi}9+dfracpi{18}=dfracpi2$
Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?
$endgroup$
$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1146390%2fhow-to-prove-that-cot-frac11-pi18-cot-frac2-pi9-4-sin-frac-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.
$endgroup$
$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28
$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35
add a comment |
$begingroup$
We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.
$endgroup$
$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28
$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35
add a comment |
$begingroup$
We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.
$endgroup$
We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.
answered Feb 13 '15 at 10:45


Jack D'AurizioJack D'Aurizio
292k33284672
292k33284672
$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28
$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35
add a comment |
$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28
$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35
$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28
$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28
$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35
$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35
add a comment |
$begingroup$
$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$
Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$
( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)
which needs to be $=sindfracpi{18}cotdfrac{2pi}9$
which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$
as $dfrac{4pi}9+dfracpi{18}=dfracpi2$
Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?
$endgroup$
$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03
add a comment |
$begingroup$
$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$
Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$
( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)
which needs to be $=sindfracpi{18}cotdfrac{2pi}9$
which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$
as $dfrac{4pi}9+dfracpi{18}=dfracpi2$
Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?
$endgroup$
$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03
add a comment |
$begingroup$
$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$
Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$
( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)
which needs to be $=sindfracpi{18}cotdfrac{2pi}9$
which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$
as $dfrac{4pi}9+dfracpi{18}=dfracpi2$
Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?
$endgroup$
$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$
Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$
( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)
which needs to be $=sindfracpi{18}cotdfrac{2pi}9$
which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$
as $dfrac{4pi}9+dfracpi{18}=dfracpi2$
Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?
edited Apr 13 '17 at 12:20
Community♦
1
1
answered Feb 14 '15 at 16:34
lab bhattacharjeelab bhattacharjee
228k15158279
228k15158279
$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03
add a comment |
$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03
$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03
$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1146390%2fhow-to-prove-that-cot-frac11-pi18-cot-frac2-pi9-4-sin-frac-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26