How to prove that $cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$












1












$begingroup$


How to prove this trigonometric identities ?



$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$



Thank you.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
    $endgroup$
    – Andrei Rykhalski
    Feb 13 '15 at 10:26
















1












$begingroup$


How to prove this trigonometric identities ?



$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$



Thank you.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
    $endgroup$
    – Andrei Rykhalski
    Feb 13 '15 at 10:26














1












1








1





$begingroup$


How to prove this trigonometric identities ?



$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$



Thank you.










share|cite|improve this question









$endgroup$




How to prove this trigonometric identities ?



$$cot{frac{11pi}{18}} +cot{frac{2pi}{9}}=4sin{frac{pi}{18}}cot{frac{2pi}{9}}$$



Thank you.







trigonometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 13 '15 at 10:19









kongkong

27528




27528












  • $begingroup$
    Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
    $endgroup$
    – Andrei Rykhalski
    Feb 13 '15 at 10:26


















  • $begingroup$
    Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
    $endgroup$
    – Andrei Rykhalski
    Feb 13 '15 at 10:26
















$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26




$begingroup$
Have you tried anything? I believe you should take $phi = pi/18$ for simplicity, write the problem in terms of $phi$ and then just use simple formulas like $cot phi = cos phi/sin phi$, $cos alpha sin beta = sin frac{alpha + beta}{2}sin frac{alpha-beta}{2}$ and so on.
$endgroup$
– Andrei Rykhalski
Feb 13 '15 at 10:26










2 Answers
2






active

oldest

votes


















0












$begingroup$

We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you. Are there pure trigonometric methods or another?
    $endgroup$
    – kong
    Feb 13 '15 at 11:28










  • $begingroup$
    @kong, Please find the other solution.
    $endgroup$
    – lab bhattacharjee
    Feb 14 '15 at 16:35



















0












$begingroup$

$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$



Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$



( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)



which needs to be $=sindfracpi{18}cotdfrac{2pi}9$



which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$



as $dfrac{4pi}9+dfracpi{18}=dfracpi2$



Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @kong, How about this?
    $endgroup$
    – lab bhattacharjee
    Feb 21 '15 at 5:03












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1146390%2fhow-to-prove-that-cot-frac11-pi18-cot-frac2-pi9-4-sin-frac-pi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you. Are there pure trigonometric methods or another?
    $endgroup$
    – kong
    Feb 13 '15 at 11:28










  • $begingroup$
    @kong, Please find the other solution.
    $endgroup$
    – lab bhattacharjee
    Feb 14 '15 at 16:35
















0












$begingroup$

We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you. Are there pure trigonometric methods or another?
    $endgroup$
    – kong
    Feb 13 '15 at 11:28










  • $begingroup$
    @kong, Please find the other solution.
    $endgroup$
    – lab bhattacharjee
    Feb 14 '15 at 16:35














0












0








0





$begingroup$

We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.






share|cite|improve this answer









$endgroup$



We have to check:
$$ -tanfrac{pi}{9}+cotfrac{2pi}{9}=4cosfrac{4pi}{9}cotfrac{2pi}{9} $$
hence, by multiplying both sides by $sinfrac{2pi}{9}=2sinfrac{pi}{9}cosfrac{pi}{9}$:
$$ -2sin^2frac{pi}{9}+cosfrac{2pi}{9} = 4cosfrac{4pi}{9}cosfrac{2pi}{9} $$
so we just have to check that $x=cosfrac{2pi}{9}$ is a solution of:
$$ 2x-1 = 4x(2x^2-1) $$
or a root of:
$$ p(x) = 8x^3-6x+1 = 2cdot T_3(x)-1, tag{1}$$
where $T_3(x)=4x^3-3x$ is a Chebyshev polynomial. To check that $cosfrac{2pi}{9}$ is a root of the RHS of $(1)$ is trivial, since $T_3(cosalpha)=cos(3alpha)$:
$$ 2cdot T_3left(cosfrac{2pi}{9}right)-1 = 2cdotcosfrac{2pi}{3}-1 = 0, $$
hence we're done.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Feb 13 '15 at 10:45









Jack D'AurizioJack D'Aurizio

292k33284672




292k33284672












  • $begingroup$
    Thank you. Are there pure trigonometric methods or another?
    $endgroup$
    – kong
    Feb 13 '15 at 11:28










  • $begingroup$
    @kong, Please find the other solution.
    $endgroup$
    – lab bhattacharjee
    Feb 14 '15 at 16:35


















  • $begingroup$
    Thank you. Are there pure trigonometric methods or another?
    $endgroup$
    – kong
    Feb 13 '15 at 11:28










  • $begingroup$
    @kong, Please find the other solution.
    $endgroup$
    – lab bhattacharjee
    Feb 14 '15 at 16:35
















$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28




$begingroup$
Thank you. Are there pure trigonometric methods or another?
$endgroup$
– kong
Feb 13 '15 at 11:28












$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35




$begingroup$
@kong, Please find the other solution.
$endgroup$
– lab bhattacharjee
Feb 14 '15 at 16:35











0












$begingroup$

$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$



Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$



( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)



which needs to be $=sindfracpi{18}cotdfrac{2pi}9$



which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$



as $dfrac{4pi}9+dfracpi{18}=dfracpi2$



Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @kong, How about this?
    $endgroup$
    – lab bhattacharjee
    Feb 21 '15 at 5:03
















0












$begingroup$

$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$



Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$



( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)



which needs to be $=sindfracpi{18}cotdfrac{2pi}9$



which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$



as $dfrac{4pi}9+dfracpi{18}=dfracpi2$



Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @kong, How about this?
    $endgroup$
    – lab bhattacharjee
    Feb 21 '15 at 5:03














0












0








0





$begingroup$

$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$



Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$



( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)



which needs to be $=sindfracpi{18}cotdfrac{2pi}9$



which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$



as $dfrac{4pi}9+dfracpi{18}=dfracpi2$



Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?






share|cite|improve this answer











$endgroup$



$cotdfrac{11pi}{18}=cotleft(pi-dfrac{7pi}{18}right)=-cotdfrac{7pi}{18}$



Now $cotdfrac{2pi}9-cotdfrac{7pi}{18}=dfrac{sinleft(dfrac{7pi}{18}-dfrac{2pi}9right)}{sindfrac{2pi}9cdotsindfrac{7pi}{18}}=dfrac1{2sindfrac{2pi}9cosdfracpi9}$



( as $sindfrac{7pi}{18}=cosleft(dfracpi2-dfrac{7pi}{18}right)=cosdfracpi9$)



which needs to be $=sindfracpi{18}cotdfrac{2pi}9$



which will be true if $8sindfracpi{18}cosdfracpi9cosdfrac{2pi}9=1$
$iff8cosdfracpi9cosdfrac{2pi}9cosdfrac{4pi}9=1$



as $dfrac{4pi}9+dfracpi{18}=dfracpi2$



Now use: Upon multiplying $cos(20^circ)cos(40^circ)cos(80^circ)$ by the sine of a certain angle, it gets reduced. What is that angle?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 13 '17 at 12:20









Community

1




1










answered Feb 14 '15 at 16:34









lab bhattacharjeelab bhattacharjee

228k15158279




228k15158279












  • $begingroup$
    @kong, How about this?
    $endgroup$
    – lab bhattacharjee
    Feb 21 '15 at 5:03


















  • $begingroup$
    @kong, How about this?
    $endgroup$
    – lab bhattacharjee
    Feb 21 '15 at 5:03
















$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03




$begingroup$
@kong, How about this?
$endgroup$
– lab bhattacharjee
Feb 21 '15 at 5:03


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1146390%2fhow-to-prove-that-cot-frac11-pi18-cot-frac2-pi9-4-sin-frac-pi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith