Idea for $limlimits_{x to frac{pi}{2}} left( tan left( tfrac{pi}{4} sin xright)right)^{1/ ( tan (pi sin x))}$
$begingroup$
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$
Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.
ps. can't use lhopital
limits trigonometry limits-without-lhopital
$endgroup$
|
show 3 more comments
$begingroup$
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$
Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.
ps. can't use lhopital
limits trigonometry limits-without-lhopital
$endgroup$
1
$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45
$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46
$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48
$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52
1
$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05
|
show 3 more comments
$begingroup$
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$
Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.
ps. can't use lhopital
limits trigonometry limits-without-lhopital
$endgroup$
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$
Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.
ps. can't use lhopital
limits trigonometry limits-without-lhopital
limits trigonometry limits-without-lhopital
edited Jan 26 at 17:43
rtybase
11.5k31534
11.5k31534
asked Jan 25 at 18:40


bono95zgbono95zg
112
112
1
$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45
$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46
$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48
$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52
1
$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05
|
show 3 more comments
1
$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45
$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46
$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48
$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52
1
$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05
1
1
$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45
$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45
$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46
$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46
$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48
$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48
$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52
$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52
1
1
$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05
$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05
|
show 3 more comments
4 Answers
4
active
oldest
votes
$begingroup$
Warning: you'll want to double-check all my arithmetic.
With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$
$endgroup$
$begingroup$
looks correct. thank you.
$endgroup$
– bono95zg
Jan 25 at 19:31
add a comment |
$begingroup$
You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
$$
lim_{ttopi/4^-}(tan t)^{1/tan4t}
$$
(prove first that both the limit from the left and from the right lead to the same limit).
Now it's better to pass to the logarithm:
$$
lim_{ttopi/4^-}frac{logtan t}{tan 4t}
$$
Apply $t=pi/4-u$,
$$
tan t=frac{1-tan u}{1+tan u}
$$
and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
$$
lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
$$
Now, for instance,
$$
lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
$$
$endgroup$
$begingroup$
If you consider $1pmtan u$, you can do both calculations for the price of one.
$endgroup$
– J.G.
Jan 25 at 22:20
$begingroup$
@J.G. That's indeed the idea: the second limit to compute is essentially the same.
$endgroup$
– egreg
Jan 25 at 22:27
$begingroup$
I know; I was making an edit suggestion.
$endgroup$
– J.G.
Jan 25 at 22:45
add a comment |
$begingroup$
Alternatively:
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
$$
$endgroup$
add a comment |
$begingroup$
Let $dfrac{pisin x}4=y$
$$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$
The inner limit converges to $e$
The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$
Method$#1:$
$$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$
Method$#2:$
$$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$
$$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$
$$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087460%2fidea-for-lim-limits-x-to-frac-pi2-left-tan-left-tfrac-pi4-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Warning: you'll want to double-check all my arithmetic.
With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$
$endgroup$
$begingroup$
looks correct. thank you.
$endgroup$
– bono95zg
Jan 25 at 19:31
add a comment |
$begingroup$
Warning: you'll want to double-check all my arithmetic.
With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$
$endgroup$
$begingroup$
looks correct. thank you.
$endgroup$
– bono95zg
Jan 25 at 19:31
add a comment |
$begingroup$
Warning: you'll want to double-check all my arithmetic.
With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$
$endgroup$
Warning: you'll want to double-check all my arithmetic.
With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$
answered Jan 25 at 19:07
J.G.J.G.
30.9k23149
30.9k23149
$begingroup$
looks correct. thank you.
$endgroup$
– bono95zg
Jan 25 at 19:31
add a comment |
$begingroup$
looks correct. thank you.
$endgroup$
– bono95zg
Jan 25 at 19:31
$begingroup$
looks correct. thank you.
$endgroup$
– bono95zg
Jan 25 at 19:31
$begingroup$
looks correct. thank you.
$endgroup$
– bono95zg
Jan 25 at 19:31
add a comment |
$begingroup$
You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
$$
lim_{ttopi/4^-}(tan t)^{1/tan4t}
$$
(prove first that both the limit from the left and from the right lead to the same limit).
Now it's better to pass to the logarithm:
$$
lim_{ttopi/4^-}frac{logtan t}{tan 4t}
$$
Apply $t=pi/4-u$,
$$
tan t=frac{1-tan u}{1+tan u}
$$
and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
$$
lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
$$
Now, for instance,
$$
lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
$$
$endgroup$
$begingroup$
If you consider $1pmtan u$, you can do both calculations for the price of one.
$endgroup$
– J.G.
Jan 25 at 22:20
$begingroup$
@J.G. That's indeed the idea: the second limit to compute is essentially the same.
$endgroup$
– egreg
Jan 25 at 22:27
$begingroup$
I know; I was making an edit suggestion.
$endgroup$
– J.G.
Jan 25 at 22:45
add a comment |
$begingroup$
You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
$$
lim_{ttopi/4^-}(tan t)^{1/tan4t}
$$
(prove first that both the limit from the left and from the right lead to the same limit).
Now it's better to pass to the logarithm:
$$
lim_{ttopi/4^-}frac{logtan t}{tan 4t}
$$
Apply $t=pi/4-u$,
$$
tan t=frac{1-tan u}{1+tan u}
$$
and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
$$
lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
$$
Now, for instance,
$$
lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
$$
$endgroup$
$begingroup$
If you consider $1pmtan u$, you can do both calculations for the price of one.
$endgroup$
– J.G.
Jan 25 at 22:20
$begingroup$
@J.G. That's indeed the idea: the second limit to compute is essentially the same.
$endgroup$
– egreg
Jan 25 at 22:27
$begingroup$
I know; I was making an edit suggestion.
$endgroup$
– J.G.
Jan 25 at 22:45
add a comment |
$begingroup$
You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
$$
lim_{ttopi/4^-}(tan t)^{1/tan4t}
$$
(prove first that both the limit from the left and from the right lead to the same limit).
Now it's better to pass to the logarithm:
$$
lim_{ttopi/4^-}frac{logtan t}{tan 4t}
$$
Apply $t=pi/4-u$,
$$
tan t=frac{1-tan u}{1+tan u}
$$
and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
$$
lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
$$
Now, for instance,
$$
lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
$$
$endgroup$
You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
$$
lim_{ttopi/4^-}(tan t)^{1/tan4t}
$$
(prove first that both the limit from the left and from the right lead to the same limit).
Now it's better to pass to the logarithm:
$$
lim_{ttopi/4^-}frac{logtan t}{tan 4t}
$$
Apply $t=pi/4-u$,
$$
tan t=frac{1-tan u}{1+tan u}
$$
and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
$$
lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
$$
Now, for instance,
$$
lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
$$
answered Jan 25 at 21:54


egregegreg
184k1486206
184k1486206
$begingroup$
If you consider $1pmtan u$, you can do both calculations for the price of one.
$endgroup$
– J.G.
Jan 25 at 22:20
$begingroup$
@J.G. That's indeed the idea: the second limit to compute is essentially the same.
$endgroup$
– egreg
Jan 25 at 22:27
$begingroup$
I know; I was making an edit suggestion.
$endgroup$
– J.G.
Jan 25 at 22:45
add a comment |
$begingroup$
If you consider $1pmtan u$, you can do both calculations for the price of one.
$endgroup$
– J.G.
Jan 25 at 22:20
$begingroup$
@J.G. That's indeed the idea: the second limit to compute is essentially the same.
$endgroup$
– egreg
Jan 25 at 22:27
$begingroup$
I know; I was making an edit suggestion.
$endgroup$
– J.G.
Jan 25 at 22:45
$begingroup$
If you consider $1pmtan u$, you can do both calculations for the price of one.
$endgroup$
– J.G.
Jan 25 at 22:20
$begingroup$
If you consider $1pmtan u$, you can do both calculations for the price of one.
$endgroup$
– J.G.
Jan 25 at 22:20
$begingroup$
@J.G. That's indeed the idea: the second limit to compute is essentially the same.
$endgroup$
– egreg
Jan 25 at 22:27
$begingroup$
@J.G. That's indeed the idea: the second limit to compute is essentially the same.
$endgroup$
– egreg
Jan 25 at 22:27
$begingroup$
I know; I was making an edit suggestion.
$endgroup$
– J.G.
Jan 25 at 22:45
$begingroup$
I know; I was making an edit suggestion.
$endgroup$
– J.G.
Jan 25 at 22:45
add a comment |
$begingroup$
Alternatively:
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
$$
$endgroup$
add a comment |
$begingroup$
Alternatively:
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
$$
$endgroup$
add a comment |
$begingroup$
Alternatively:
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
$$
$endgroup$
Alternatively:
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
$$
answered Jan 26 at 13:10


farruhotafarruhota
21.3k2841
21.3k2841
add a comment |
add a comment |
$begingroup$
Let $dfrac{pisin x}4=y$
$$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$
The inner limit converges to $e$
The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$
Method$#1:$
$$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$
Method$#2:$
$$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$
$$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$
$$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$
$endgroup$
add a comment |
$begingroup$
Let $dfrac{pisin x}4=y$
$$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$
The inner limit converges to $e$
The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$
Method$#1:$
$$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$
Method$#2:$
$$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$
$$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$
$$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$
$endgroup$
add a comment |
$begingroup$
Let $dfrac{pisin x}4=y$
$$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$
The inner limit converges to $e$
The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$
Method$#1:$
$$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$
Method$#2:$
$$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$
$$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$
$$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$
$endgroup$
Let $dfrac{pisin x}4=y$
$$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$
The inner limit converges to $e$
The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$
Method$#1:$
$$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$
Method$#2:$
$$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$
$$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$
$$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$
edited Jan 26 at 15:11
answered Jan 26 at 14:56
lab bhattacharjeelab bhattacharjee
227k15158276
227k15158276
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087460%2fidea-for-lim-limits-x-to-frac-pi2-left-tan-left-tfrac-pi4-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45
$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46
$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48
$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52
1
$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05