Idea for $limlimits_{x to frac{pi}{2}} left( tan left( tfrac{pi}{4} sin xright)right)^{1/ ( tan (pi sin x))}$












1












$begingroup$


$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$



Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.



ps. can't use lhopital










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
    $endgroup$
    – J.G.
    Jan 25 at 18:45










  • $begingroup$
    yeah its pi/4 *sinx
    $endgroup$
    – bono95zg
    Jan 25 at 18:46










  • $begingroup$
    (πsinx)/4 to be exact
    $endgroup$
    – bono95zg
    Jan 25 at 18:48










  • $begingroup$
    L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
    $endgroup$
    – Paras Khosla
    Jan 25 at 18:52








  • 1




    $begingroup$
    tangent then exp
    $endgroup$
    – bono95zg
    Jan 25 at 19:05
















1












$begingroup$


$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$



Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.



ps. can't use lhopital










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
    $endgroup$
    – J.G.
    Jan 25 at 18:45










  • $begingroup$
    yeah its pi/4 *sinx
    $endgroup$
    – bono95zg
    Jan 25 at 18:46










  • $begingroup$
    (πsinx)/4 to be exact
    $endgroup$
    – bono95zg
    Jan 25 at 18:48










  • $begingroup$
    L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
    $endgroup$
    – Paras Khosla
    Jan 25 at 18:52








  • 1




    $begingroup$
    tangent then exp
    $endgroup$
    – bono95zg
    Jan 25 at 19:05














1












1








1





$begingroup$


$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$



Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.



ps. can't use lhopital










share|cite|improve this question











$endgroup$




$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right).$$



Need help for this. I tried using trigonometric identities but nothing seems to fit. I'm tired and clueless.



ps. can't use lhopital







limits trigonometry limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 17:43









rtybase

11.5k31534




11.5k31534










asked Jan 25 at 18:40









bono95zgbono95zg

112




112








  • 1




    $begingroup$
    Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
    $endgroup$
    – J.G.
    Jan 25 at 18:45










  • $begingroup$
    yeah its pi/4 *sinx
    $endgroup$
    – bono95zg
    Jan 25 at 18:46










  • $begingroup$
    (πsinx)/4 to be exact
    $endgroup$
    – bono95zg
    Jan 25 at 18:48










  • $begingroup$
    L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
    $endgroup$
    – Paras Khosla
    Jan 25 at 18:52








  • 1




    $begingroup$
    tangent then exp
    $endgroup$
    – bono95zg
    Jan 25 at 19:05














  • 1




    $begingroup$
    Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
    $endgroup$
    – J.G.
    Jan 25 at 18:45










  • $begingroup$
    yeah its pi/4 *sinx
    $endgroup$
    – bono95zg
    Jan 25 at 18:46










  • $begingroup$
    (πsinx)/4 to be exact
    $endgroup$
    – bono95zg
    Jan 25 at 18:48










  • $begingroup$
    L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
    $endgroup$
    – Paras Khosla
    Jan 25 at 18:52








  • 1




    $begingroup$
    tangent then exp
    $endgroup$
    – bono95zg
    Jan 25 at 19:05








1




1




$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45




$begingroup$
Sorry we've had some mishaps converting your title to MathJax. Could you please clarify whether $pisin x/4$ means $(pisin x)/4$ or $pisin (x/4)$?
$endgroup$
– J.G.
Jan 25 at 18:45












$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46




$begingroup$
yeah its pi/4 *sinx
$endgroup$
– bono95zg
Jan 25 at 18:46












$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48




$begingroup$
(πsinx)/4 to be exact
$endgroup$
– bono95zg
Jan 25 at 18:48












$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52






$begingroup$
L'Hopital's rule is not required even, just put in $x=1$. You would need a calculator for evaluation of this limit. Anyhow, the answer is: $$displaystyle tan (dfrac{pi}{4} sin (1))^{cot (pi sin (1))} approx 1.5885$$
$endgroup$
– Paras Khosla
Jan 25 at 18:52






1




1




$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05




$begingroup$
tangent then exp
$endgroup$
– bono95zg
Jan 25 at 19:05










4 Answers
4






active

oldest

votes


















0












$begingroup$

Warning: you'll want to double-check all my arithmetic.



With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    looks correct. thank you.
    $endgroup$
    – bono95zg
    Jan 25 at 19:31



















0












$begingroup$

You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
$$
lim_{ttopi/4^-}(tan t)^{1/tan4t}
$$

(prove first that both the limit from the left and from the right lead to the same limit).



Now it's better to pass to the logarithm:
$$
lim_{ttopi/4^-}frac{logtan t}{tan 4t}
$$

Apply $t=pi/4-u$,
$$
tan t=frac{1-tan u}{1+tan u}
$$

and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
$$
lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
$$

Now, for instance,
$$
lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    If you consider $1pmtan u$, you can do both calculations for the price of one.
    $endgroup$
    – J.G.
    Jan 25 at 22:20










  • $begingroup$
    @J.G. That's indeed the idea: the second limit to compute is essentially the same.
    $endgroup$
    – egreg
    Jan 25 at 22:27












  • $begingroup$
    I know; I was making an edit suggestion.
    $endgroup$
    – J.G.
    Jan 25 at 22:45



















0












$begingroup$

Alternatively:
$$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Let $dfrac{pisin x}4=y$



    $$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$



    The inner limit converges to $e$



    The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$



    Method$#1:$



    $$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$



    Method$#2:$



    $$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$



    $$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$



    $$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087460%2fidea-for-lim-limits-x-to-frac-pi2-left-tan-left-tfrac-pi4-s%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Warning: you'll want to double-check all my arithmetic.



      With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        looks correct. thank you.
        $endgroup$
        – bono95zg
        Jan 25 at 19:31
















      0












      $begingroup$

      Warning: you'll want to double-check all my arithmetic.



      With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        looks correct. thank you.
        $endgroup$
        – bono95zg
        Jan 25 at 19:31














      0












      0








      0





      $begingroup$

      Warning: you'll want to double-check all my arithmetic.



      With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$






      share|cite|improve this answer









      $endgroup$



      Warning: you'll want to double-check all my arithmetic.



      With $y:=pisin x$ we can rewrite this as $explim_{ytopi}frac{lntanfrac{y}{4}}{tan y}$. Define $t:=tanfrac{y}{4}$ so $$tanfrac{y}{2}=frac{2t}{1-t^2},,tan y=frac{4t(1-t^2)}{1-6t^2+t^4}.$$Then your limit is $$explim_{tto 1}frac{(1-6t^2+t^4)ln t}{4t(1-t^2)}=exp-lim_{tto 1}frac{ln t}{t(1-t^2)}.$$Finally, write $t=1+epsilon$ so the limit is$$explim_{epsilonto 0}frac{ln(1+epsilon)}{(1+epsilon)epsilon(2+epsilon)}=explim_{epsilonto 0}frac{ln(1+epsilon)}{2epsilon}=sqrt{e}.$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 25 at 19:07









      J.G.J.G.

      30.9k23149




      30.9k23149












      • $begingroup$
        looks correct. thank you.
        $endgroup$
        – bono95zg
        Jan 25 at 19:31


















      • $begingroup$
        looks correct. thank you.
        $endgroup$
        – bono95zg
        Jan 25 at 19:31
















      $begingroup$
      looks correct. thank you.
      $endgroup$
      – bono95zg
      Jan 25 at 19:31




      $begingroup$
      looks correct. thank you.
      $endgroup$
      – bono95zg
      Jan 25 at 19:31











      0












      $begingroup$

      You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
      $$
      lim_{ttopi/4^-}(tan t)^{1/tan4t}
      $$

      (prove first that both the limit from the left and from the right lead to the same limit).



      Now it's better to pass to the logarithm:
      $$
      lim_{ttopi/4^-}frac{logtan t}{tan 4t}
      $$

      Apply $t=pi/4-u$,
      $$
      tan t=frac{1-tan u}{1+tan u}
      $$

      and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
      $$
      lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
      $$

      Now, for instance,
      $$
      lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
      lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
      $$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        If you consider $1pmtan u$, you can do both calculations for the price of one.
        $endgroup$
        – J.G.
        Jan 25 at 22:20










      • $begingroup$
        @J.G. That's indeed the idea: the second limit to compute is essentially the same.
        $endgroup$
        – egreg
        Jan 25 at 22:27












      • $begingroup$
        I know; I was making an edit suggestion.
        $endgroup$
        – J.G.
        Jan 25 at 22:45
















      0












      $begingroup$

      You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
      $$
      lim_{ttopi/4^-}(tan t)^{1/tan4t}
      $$

      (prove first that both the limit from the left and from the right lead to the same limit).



      Now it's better to pass to the logarithm:
      $$
      lim_{ttopi/4^-}frac{logtan t}{tan 4t}
      $$

      Apply $t=pi/4-u$,
      $$
      tan t=frac{1-tan u}{1+tan u}
      $$

      and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
      $$
      lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
      $$

      Now, for instance,
      $$
      lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
      lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
      $$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        If you consider $1pmtan u$, you can do both calculations for the price of one.
        $endgroup$
        – J.G.
        Jan 25 at 22:20










      • $begingroup$
        @J.G. That's indeed the idea: the second limit to compute is essentially the same.
        $endgroup$
        – egreg
        Jan 25 at 22:27












      • $begingroup$
        I know; I was making an edit suggestion.
        $endgroup$
        – J.G.
        Jan 25 at 22:45














      0












      0








      0





      $begingroup$

      You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
      $$
      lim_{ttopi/4^-}(tan t)^{1/tan4t}
      $$

      (prove first that both the limit from the left and from the right lead to the same limit).



      Now it's better to pass to the logarithm:
      $$
      lim_{ttopi/4^-}frac{logtan t}{tan 4t}
      $$

      Apply $t=pi/4-u$,
      $$
      tan t=frac{1-tan u}{1+tan u}
      $$

      and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
      $$
      lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
      $$

      Now, for instance,
      $$
      lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
      lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
      $$






      share|cite|improve this answer









      $endgroup$



      You might first do the substitution $t=frac{pi}{4}sin x$ that brings the limit into the form
      $$
      lim_{ttopi/4^-}(tan t)^{1/tan4t}
      $$

      (prove first that both the limit from the left and from the right lead to the same limit).



      Now it's better to pass to the logarithm:
      $$
      lim_{ttopi/4^-}frac{logtan t}{tan 4t}
      $$

      Apply $t=pi/4-u$,
      $$
      tan t=frac{1-tan u}{1+tan u}
      $$

      and $tan4t=tan(pi-4u)=-tan 4u$. Therefore the limit becomes
      $$
      lim_{uto0^+}frac{log(1+tan u)-log(1-tan u)}{tan 4u}
      $$

      Now, for instance,
      $$
      lim_{uto0^+}frac{log(1+tan u)}{tan4u}=
      lim_{uto0^+}frac{log(1+tan u)}{tan u}frac{tan u}{u}frac{4u}{tan 4u}frac{1}{4}
      $$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 25 at 21:54









      egregegreg

      184k1486206




      184k1486206












      • $begingroup$
        If you consider $1pmtan u$, you can do both calculations for the price of one.
        $endgroup$
        – J.G.
        Jan 25 at 22:20










      • $begingroup$
        @J.G. That's indeed the idea: the second limit to compute is essentially the same.
        $endgroup$
        – egreg
        Jan 25 at 22:27












      • $begingroup$
        I know; I was making an edit suggestion.
        $endgroup$
        – J.G.
        Jan 25 at 22:45


















      • $begingroup$
        If you consider $1pmtan u$, you can do both calculations for the price of one.
        $endgroup$
        – J.G.
        Jan 25 at 22:20










      • $begingroup$
        @J.G. That's indeed the idea: the second limit to compute is essentially the same.
        $endgroup$
        – egreg
        Jan 25 at 22:27












      • $begingroup$
        I know; I was making an edit suggestion.
        $endgroup$
        – J.G.
        Jan 25 at 22:45
















      $begingroup$
      If you consider $1pmtan u$, you can do both calculations for the price of one.
      $endgroup$
      – J.G.
      Jan 25 at 22:20




      $begingroup$
      If you consider $1pmtan u$, you can do both calculations for the price of one.
      $endgroup$
      – J.G.
      Jan 25 at 22:20












      $begingroup$
      @J.G. That's indeed the idea: the second limit to compute is essentially the same.
      $endgroup$
      – egreg
      Jan 25 at 22:27






      $begingroup$
      @J.G. That's indeed the idea: the second limit to compute is essentially the same.
      $endgroup$
      – egreg
      Jan 25 at 22:27














      $begingroup$
      I know; I was making an edit suggestion.
      $endgroup$
      – J.G.
      Jan 25 at 22:45




      $begingroup$
      I know; I was making an edit suggestion.
      $endgroup$
      – J.G.
      Jan 25 at 22:45











      0












      $begingroup$

      Alternatively:
      $$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
      lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
      exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
      exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
      exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
      exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
      $$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Alternatively:
        $$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
        lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
        exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
        exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
        exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
        exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
        $$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Alternatively:
          $$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
          lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
          exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
          exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
          exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
          exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
          $$






          share|cite|improve this answer









          $endgroup$



          Alternatively:
          $$lim_{x to frac{pi}{2}} tan left(frac{pi}{4}sin xright)^left({dfrac 1{tan(pi sin x)}}right)=\
          lim_{x to frac{pi}{2}} left[1+tan left(frac{pi}{4}sin xright)-1right]^left({dfrac 1{tan(pi sin x)}}right)=\
          exp left[lim_{x to frac{pi}{2}} frac{tan left(frac{pi}{4}sin xright)-1}{tan(pi sin x)} right]=\
          exp left[lim_{x to frac{pi}{2}} frac{sin left(frac{pi}{4}sin xright)-cos left(frac{pi}{4}sin xright)}{sin(pi sin x)}cdot frac{cos (pi sin x)}{cos left(frac{pi}{4}sin xright)}right] =\
          exp left[lim_{x to frac{pi}{2}} frac{cos left(frac{pi}{2}sin xright)}{sin(pi sin x)}right] =\
          exp left[lim_{x to frac{pi}{2}} frac{1}{2sin(frac{pi}{2} sin x)}right] =exp left[frac12right]=sqrt{e}.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 26 at 13:10









          farruhotafarruhota

          21.3k2841




          21.3k2841























              0












              $begingroup$

              Let $dfrac{pisin x}4=y$



              $$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$



              The inner limit converges to $e$



              The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$



              Method$#1:$



              $$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$



              Method$#2:$



              $$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$



              $$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$



              $$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Let $dfrac{pisin x}4=y$



                $$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$



                The inner limit converges to $e$



                The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$



                Method$#1:$



                $$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$



                Method$#2:$



                $$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$



                $$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$



                $$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Let $dfrac{pisin x}4=y$



                  $$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$



                  The inner limit converges to $e$



                  The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$



                  Method$#1:$



                  $$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$



                  Method$#2:$



                  $$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$



                  $$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$



                  $$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$






                  share|cite|improve this answer











                  $endgroup$



                  Let $dfrac{pisin x}4=y$



                  $$lim_{ytofracpi4}(tan y)^{frac1{tan4y}}=left[lim_{ytofracpi4}(1+tan y-1)^{frac1{tan y -1}}right]^{lim_{ytofracpi4}dfrac{tan y-1}{tan4y}}$$



                  The inner limit converges to $e$



                  The exponent$(F)= lim_{ytofracpi4}dfrac{tan y-1}{tan4y}=lim_{ytofracpi4}dfrac{tan y-tandfracpi4}{tan4y-tanpi}$



                  Method$#1:$



                  $$F=dfrac{dfrac{d(tan y)}{dy}_{(text { at }y=pi/4)}}{dfrac{d(tan4y)}{dy}_{(text { at }y=pi/4)}}=?$$



                  Method$#2:$



                  $$F=lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)cos4y}{sin4ycos ycosdfracpi4}$$



                  $$=sqrt2lim_{ytofracpi4}dfrac{cos4y}{cos y}cdotdfrac{lim_{ytofracpi4}dfrac{sinleft(y-dfracpi4right)}{left(y-dfracpi4right)}}{-4lim_{ytofracpi4}dfrac{sin4left(y-dfracpi4right)}{4left(y-dfracpi4right)}}text{ as }sin(4y-pi)=-sin(pi-4y)=-sin4y$$



                  $$=dfrac{sqrt2cospi}{-4cosdfracpi4}=?$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 26 at 15:11

























                  answered Jan 26 at 14:56









                  lab bhattacharjeelab bhattacharjee

                  227k15158276




                  227k15158276






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087460%2fidea-for-lim-limits-x-to-frac-pi2-left-tan-left-tfrac-pi4-s%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      How to fix TextFormField cause rebuild widget in Flutter