If $(ord_m(a), ord_m(b)) = 1$ prove that $ord_m(ab) = ord_m(a)*ord_m(b) $












2












$begingroup$



$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.




So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$



so $ord_m(ab) mid ord_m(a) * ord_m(b)$.



I am stuck on how to proceed from here though.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Have you tried to show that $ord_m(a)mid ord_m(ab)$?
    $endgroup$
    – abiessu
    Apr 24 '14 at 16:48
















2












$begingroup$



$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.




So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$



so $ord_m(ab) mid ord_m(a) * ord_m(b)$.



I am stuck on how to proceed from here though.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Have you tried to show that $ord_m(a)mid ord_m(ab)$?
    $endgroup$
    – abiessu
    Apr 24 '14 at 16:48














2












2








2


2



$begingroup$



$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.




So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$



so $ord_m(ab) mid ord_m(a) * ord_m(b)$.



I am stuck on how to proceed from here though.










share|cite|improve this question











$endgroup$





$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.




So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$



so $ord_m(ab) mid ord_m(a) * ord_m(b)$.



I am stuck on how to proceed from here though.







elementary-number-theory modular-arithmetic multiplicative-order






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '15 at 10:26









rabota

14.4k32783




14.4k32783










asked Apr 24 '14 at 16:44









terminix00terminix00

1569




1569












  • $begingroup$
    Have you tried to show that $ord_m(a)mid ord_m(ab)$?
    $endgroup$
    – abiessu
    Apr 24 '14 at 16:48


















  • $begingroup$
    Have you tried to show that $ord_m(a)mid ord_m(ab)$?
    $endgroup$
    – abiessu
    Apr 24 '14 at 16:48
















$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48




$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48










1 Answer
1






active

oldest

votes


















2












$begingroup$

$DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.



We have that
$$begin{align}1&equiv((ab)^z)^y\
&=a^{zy}(b^y)^z\
&equiv a^{zy}.end{align}$$

Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.



Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f767579%2fif-ord-ma-ord-mb-1-prove-that-ord-mab-ord-maord-mb%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    $DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.



    We have that
    $$begin{align}1&equiv((ab)^z)^y\
    &=a^{zy}(b^y)^z\
    &equiv a^{zy}.end{align}$$

    Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.



    Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      $DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.



      We have that
      $$begin{align}1&equiv((ab)^z)^y\
      &=a^{zy}(b^y)^z\
      &equiv a^{zy}.end{align}$$

      Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.



      Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        $DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.



        We have that
        $$begin{align}1&equiv((ab)^z)^y\
        &=a^{zy}(b^y)^z\
        &equiv a^{zy}.end{align}$$

        Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.



        Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$






        share|cite|improve this answer











        $endgroup$



        $DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.



        We have that
        $$begin{align}1&equiv((ab)^z)^y\
        &=a^{zy}(b^y)^z\
        &equiv a^{zy}.end{align}$$

        Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.



        Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 29 at 7:43









        Martin Sleziak

        44.9k10122277




        44.9k10122277










        answered Apr 24 '14 at 17:49









        rabotarabota

        14.4k32783




        14.4k32783






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f767579%2fif-ord-ma-ord-mb-1-prove-that-ord-mab-ord-maord-mb%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith