If $(ord_m(a), ord_m(b)) = 1$ prove that $ord_m(ab) = ord_m(a)*ord_m(b) $
$begingroup$
$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.
So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$
so $ord_m(ab) mid ord_m(a) * ord_m(b)$.
I am stuck on how to proceed from here though.
elementary-number-theory modular-arithmetic multiplicative-order
$endgroup$
add a comment |
$begingroup$
$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.
So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$
so $ord_m(ab) mid ord_m(a) * ord_m(b)$.
I am stuck on how to proceed from here though.
elementary-number-theory modular-arithmetic multiplicative-order
$endgroup$
$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48
add a comment |
$begingroup$
$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.
So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$
so $ord_m(ab) mid ord_m(a) * ord_m(b)$.
I am stuck on how to proceed from here though.
elementary-number-theory modular-arithmetic multiplicative-order
$endgroup$
$DeclareMathOperatorord{ord}$Let $a, b$, and $m$ be positive integers such that $(a,m) = (b,m) = 1$. Assume that $(ord_m(a), ord_m(b)) = 1$. Prove that $ord_m(ab) = ord_m(a)*ord_m(b)$.
So I got $(ab)^{ord_m(a)*ord_m(b)} = 1 bmod m$
so $ord_m(ab) mid ord_m(a) * ord_m(b)$.
I am stuck on how to proceed from here though.
elementary-number-theory modular-arithmetic multiplicative-order
elementary-number-theory modular-arithmetic multiplicative-order
edited Dec 21 '15 at 10:26
rabota
14.4k32783
14.4k32783
asked Apr 24 '14 at 16:44
terminix00terminix00
1569
1569
$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48
add a comment |
$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48
$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48
$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.
We have that
$$begin{align}1&equiv((ab)^z)^y\
&=a^{zy}(b^y)^z\
&equiv a^{zy}.end{align}$$
Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.
Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f767579%2fif-ord-ma-ord-mb-1-prove-that-ord-mab-ord-maord-mb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.
We have that
$$begin{align}1&equiv((ab)^z)^y\
&=a^{zy}(b^y)^z\
&equiv a^{zy}.end{align}$$
Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.
Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$
$endgroup$
add a comment |
$begingroup$
$DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.
We have that
$$begin{align}1&equiv((ab)^z)^y\
&=a^{zy}(b^y)^z\
&equiv a^{zy}.end{align}$$
Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.
Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$
$endgroup$
add a comment |
$begingroup$
$DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.
We have that
$$begin{align}1&equiv((ab)^z)^y\
&=a^{zy}(b^y)^z\
&equiv a^{zy}.end{align}$$
Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.
Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$
$endgroup$
$DeclareMathOperatorord{ord}$Let $x=ord_m(a)$, $y=ord_m(b)$ and $z=ord_m(ab)$. You already found that $zmid xy$. It remains to prove that $xymid z$.
We have that
$$begin{align}1&equiv((ab)^z)^y\
&=a^{zy}(b^y)^z\
&equiv a^{zy}.end{align}$$
Therefore, $xmid zy$. As $gcd(x,y)=1$, it follows that $xmid z$.
Analogously we can show that $ymid z$. Because $gcd(x,y)=1$, this means that $xymid z$, which completes the proof. $square$
edited Jan 29 at 7:43


Martin Sleziak
44.9k10122277
44.9k10122277
answered Apr 24 '14 at 17:49
rabotarabota
14.4k32783
14.4k32783
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f767579%2fif-ord-ma-ord-mb-1-prove-that-ord-mab-ord-maord-mb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Have you tried to show that $ord_m(a)mid ord_m(ab)$?
$endgroup$
– abiessu
Apr 24 '14 at 16:48