$intlimits_0^infty {x^4 over (x^4-x^2+1)^4} dx$












2












$begingroup$


I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$



I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results










share|cite|improve this question











$endgroup$












  • $begingroup$
    The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
    $endgroup$
    – Seewoo Lee
    Jan 22 at 5:54










  • $begingroup$
    Partial fractions?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:54






  • 4




    $begingroup$
    I remember the days when people just did integrations rather than Google them.
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:55










  • $begingroup$
    These days are over!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 6:00






  • 2




    $begingroup$
    Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
    $endgroup$
    – zwim
    Jan 22 at 6:41


















2












$begingroup$


I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$



I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results










share|cite|improve this question











$endgroup$












  • $begingroup$
    The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
    $endgroup$
    – Seewoo Lee
    Jan 22 at 5:54










  • $begingroup$
    Partial fractions?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:54






  • 4




    $begingroup$
    I remember the days when people just did integrations rather than Google them.
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:55










  • $begingroup$
    These days are over!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 6:00






  • 2




    $begingroup$
    Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
    $endgroup$
    – zwim
    Jan 22 at 6:41
















2












2








2


3



$begingroup$


I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$



I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results










share|cite|improve this question











$endgroup$




I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$



I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results







definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 22 at 6:32









David G. Stork

11.1k41432




11.1k41432










asked Jan 22 at 5:52









Reynan HenryReynan Henry

751




751












  • $begingroup$
    The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
    $endgroup$
    – Seewoo Lee
    Jan 22 at 5:54










  • $begingroup$
    Partial fractions?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:54






  • 4




    $begingroup$
    I remember the days when people just did integrations rather than Google them.
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:55










  • $begingroup$
    These days are over!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 6:00






  • 2




    $begingroup$
    Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
    $endgroup$
    – zwim
    Jan 22 at 6:41




















  • $begingroup$
    The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
    $endgroup$
    – Seewoo Lee
    Jan 22 at 5:54










  • $begingroup$
    Partial fractions?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:54






  • 4




    $begingroup$
    I remember the days when people just did integrations rather than Google them.
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 5:55










  • $begingroup$
    These days are over!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 6:00






  • 2




    $begingroup$
    Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
    $endgroup$
    – zwim
    Jan 22 at 6:41


















$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54




$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54












$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54




$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54




4




4




$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55




$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55












$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00




$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00




2




2




$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41






$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41












2 Answers
2






active

oldest

votes


















5












$begingroup$

For $b > 0$, define $I_b(a)$ by



$$ I_b(a)
= int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
= int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$



This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then



begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= I_4(-4)
= I_4(2) \
&= I_4(2) - I_4(0) + I_4(-2) \
&= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
end{align*}



So, by the Glasser's master theorem,



begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
&= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
&= frac{3pi}{16}
approx 0.58904862254808623221 cdots.
end{align*}






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    +1. I knew there'd be a Glasser solution somewhere.
    $endgroup$
    – J.G.
    Jan 22 at 7:31



















4












$begingroup$

Here is another way to get to the same point as what @Sangchul Lee gives.



Let
$$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Then
$$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
begin{align}
I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
&= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
end{align}

On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
begin{align}
I &= int_0^infty frac{du}{(u^2 + 1)^3}\
&= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
&= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
&= frac{3pi}{16},
end{align}

as expected.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082789%2fint-limits-0-infty-x4-over-x4-x214-dx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    For $b > 0$, define $I_b(a)$ by



    $$ I_b(a)
    = int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
    = int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$



    This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= I_4(-4)
    = I_4(2) \
    &= I_4(2) - I_4(0) + I_4(-2) \
    &= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
    end{align*}



    So, by the Glasser's master theorem,



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
    &= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
    &= frac{3pi}{16}
    approx 0.58904862254808623221 cdots.
    end{align*}






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      +1. I knew there'd be a Glasser solution somewhere.
      $endgroup$
      – J.G.
      Jan 22 at 7:31
















    5












    $begingroup$

    For $b > 0$, define $I_b(a)$ by



    $$ I_b(a)
    = int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
    = int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$



    This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= I_4(-4)
    = I_4(2) \
    &= I_4(2) - I_4(0) + I_4(-2) \
    &= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
    end{align*}



    So, by the Glasser's master theorem,



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
    &= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
    &= frac{3pi}{16}
    approx 0.58904862254808623221 cdots.
    end{align*}






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      +1. I knew there'd be a Glasser solution somewhere.
      $endgroup$
      – J.G.
      Jan 22 at 7:31














    5












    5








    5





    $begingroup$

    For $b > 0$, define $I_b(a)$ by



    $$ I_b(a)
    = int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
    = int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$



    This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= I_4(-4)
    = I_4(2) \
    &= I_4(2) - I_4(0) + I_4(-2) \
    &= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
    end{align*}



    So, by the Glasser's master theorem,



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
    &= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
    &= frac{3pi}{16}
    approx 0.58904862254808623221 cdots.
    end{align*}






    share|cite|improve this answer









    $endgroup$



    For $b > 0$, define $I_b(a)$ by



    $$ I_b(a)
    = int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
    = int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$



    This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= I_4(-4)
    = I_4(2) \
    &= I_4(2) - I_4(0) + I_4(-2) \
    &= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
    end{align*}



    So, by the Glasser's master theorem,



    begin{align*}
    int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
    &= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
    &= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
    &= frac{3pi}{16}
    approx 0.58904862254808623221 cdots.
    end{align*}







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 22 at 7:03









    Sangchul LeeSangchul Lee

    95.5k12171279




    95.5k12171279








    • 1




      $begingroup$
      +1. I knew there'd be a Glasser solution somewhere.
      $endgroup$
      – J.G.
      Jan 22 at 7:31














    • 1




      $begingroup$
      +1. I knew there'd be a Glasser solution somewhere.
      $endgroup$
      – J.G.
      Jan 22 at 7:31








    1




    1




    $begingroup$
    +1. I knew there'd be a Glasser solution somewhere.
    $endgroup$
    – J.G.
    Jan 22 at 7:31




    $begingroup$
    +1. I knew there'd be a Glasser solution somewhere.
    $endgroup$
    – J.G.
    Jan 22 at 7:31











    4












    $begingroup$

    Here is another way to get to the same point as what @Sangchul Lee gives.



    Let
    $$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
    Then
    $$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
    Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
    begin{align}
    I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
    &= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
    &= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
    &= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
    end{align}

    On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
    begin{align}
    I &= int_0^infty frac{du}{(u^2 + 1)^3}\
    &= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
    &= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
    &= frac{3pi}{16},
    end{align}

    as expected.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Here is another way to get to the same point as what @Sangchul Lee gives.



      Let
      $$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
      Then
      $$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
      Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
      begin{align}
      I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
      &= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
      &= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
      &= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
      end{align}

      On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
      begin{align}
      I &= int_0^infty frac{du}{(u^2 + 1)^3}\
      &= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
      &= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
      &= frac{3pi}{16},
      end{align}

      as expected.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Here is another way to get to the same point as what @Sangchul Lee gives.



        Let
        $$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
        Then
        $$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
        Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
        begin{align}
        I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
        &= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
        &= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
        &= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
        end{align}

        On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
        begin{align}
        I &= int_0^infty frac{du}{(u^2 + 1)^3}\
        &= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
        &= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
        &= frac{3pi}{16},
        end{align}

        as expected.






        share|cite|improve this answer









        $endgroup$



        Here is another way to get to the same point as what @Sangchul Lee gives.



        Let
        $$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
        Then
        $$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
        Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
        begin{align}
        I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
        &= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
        &= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
        &= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
        end{align}

        On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
        begin{align}
        I &= int_0^infty frac{du}{(u^2 + 1)^3}\
        &= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
        &= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
        &= frac{3pi}{16},
        end{align}

        as expected.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 22 at 7:15









        omegadotomegadot

        6,3972829




        6,3972829






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082789%2fint-limits-0-infty-x4-over-x4-x214-dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith