$intlimits_0^infty {x^4 over (x^4-x^2+1)^4} dx$
$begingroup$
I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$
I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results
definite-integrals
$endgroup$
|
show 4 more comments
$begingroup$
I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$
I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results
definite-integrals
$endgroup$
$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54
$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54
4
$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55
$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00
2
$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41
|
show 4 more comments
$begingroup$
I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$
I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results
definite-integrals
$endgroup$
I want to calculate
$$intlimits_0^infty frac{x^4}{(x^4-x^2+1)^4}dx$$
I have searched with keywords "frac{x^4}{(x^4-x^2+1)^4}" and "x^4/(x^4-x^2+1)^4". But there are no results
definite-integrals
definite-integrals
edited Jan 22 at 6:32
David G. Stork
11.1k41432
11.1k41432
asked Jan 22 at 5:52
Reynan HenryReynan Henry
751
751
$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54
$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54
4
$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55
$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00
2
$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41
|
show 4 more comments
$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54
$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54
4
$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55
$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00
2
$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41
$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54
$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54
$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54
$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54
4
4
$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55
$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55
$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00
$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00
2
2
$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41
$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41
|
show 4 more comments
2 Answers
2
active
oldest
votes
$begingroup$
For $b > 0$, define $I_b(a)$ by
$$ I_b(a)
= int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
= int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$
This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= I_4(-4)
= I_4(2) \
&= I_4(2) - I_4(0) + I_4(-2) \
&= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
end{align*}
So, by the Glasser's master theorem,
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
&= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
&= frac{3pi}{16}
approx 0.58904862254808623221 cdots.
end{align*}
$endgroup$
1
$begingroup$
+1. I knew there'd be a Glasser solution somewhere.
$endgroup$
– J.G.
Jan 22 at 7:31
add a comment |
$begingroup$
Here is another way to get to the same point as what @Sangchul Lee gives.
Let
$$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Then
$$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
begin{align}
I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
&= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
end{align}
On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
begin{align}
I &= int_0^infty frac{du}{(u^2 + 1)^3}\
&= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
&= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
&= frac{3pi}{16},
end{align}
as expected.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082789%2fint-limits-0-infty-x4-over-x4-x214-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $b > 0$, define $I_b(a)$ by
$$ I_b(a)
= int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
= int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$
This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= I_4(-4)
= I_4(2) \
&= I_4(2) - I_4(0) + I_4(-2) \
&= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
end{align*}
So, by the Glasser's master theorem,
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
&= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
&= frac{3pi}{16}
approx 0.58904862254808623221 cdots.
end{align*}
$endgroup$
1
$begingroup$
+1. I knew there'd be a Glasser solution somewhere.
$endgroup$
– J.G.
Jan 22 at 7:31
add a comment |
$begingroup$
For $b > 0$, define $I_b(a)$ by
$$ I_b(a)
= int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
= int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$
This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= I_4(-4)
= I_4(2) \
&= I_4(2) - I_4(0) + I_4(-2) \
&= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
end{align*}
So, by the Glasser's master theorem,
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
&= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
&= frac{3pi}{16}
approx 0.58904862254808623221 cdots.
end{align*}
$endgroup$
1
$begingroup$
+1. I knew there'd be a Glasser solution somewhere.
$endgroup$
– J.G.
Jan 22 at 7:31
add a comment |
$begingroup$
For $b > 0$, define $I_b(a)$ by
$$ I_b(a)
= int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
= int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$
This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= I_4(-4)
= I_4(2) \
&= I_4(2) - I_4(0) + I_4(-2) \
&= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
end{align*}
So, by the Glasser's master theorem,
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
&= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
&= frac{3pi}{16}
approx 0.58904862254808623221 cdots.
end{align*}
$endgroup$
For $b > 0$, define $I_b(a)$ by
$$ I_b(a)
= int_{0}^{infty} frac{x^{a}}{((x - x^{-1})^2 + 1)^b} , mathrm{d}x
= int_{0}^{infty} frac{x^{a+2b}}{(x^4 - x^2 + 1)^b} , mathrm{d}x. $$
This integral converges if $|a+1| < 2b$. We can also prove that $I_b(a) = I_b(-a-2)$ holds, by using the substitution $x mapsto 1/x$. Then
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= I_4(-4)
= I_4(2) \
&= I_4(2) - I_4(0) + I_4(-2) \
&= int_{0}^{infty} frac{1}{((x - x^{-1})^2 + 1)^3} , mathrm{d}x
end{align*}
So, by the Glasser's master theorem,
begin{align*}
int_{0}^{infty} frac{x^4}{(x^4 - x^2 + 1)^4} , mathrm{d}x
&= int_{0}^{infty} frac{1}{(u^2 + 1)^3} , mathrm{d}u \
&= int_{0}^{frac{pi}{2}} cos^4theta , mathrm{d}theta tag{$(u=tantheta)$} \
&= frac{3pi}{16}
approx 0.58904862254808623221 cdots.
end{align*}
answered Jan 22 at 7:03
Sangchul LeeSangchul Lee
95.5k12171279
95.5k12171279
1
$begingroup$
+1. I knew there'd be a Glasser solution somewhere.
$endgroup$
– J.G.
Jan 22 at 7:31
add a comment |
1
$begingroup$
+1. I knew there'd be a Glasser solution somewhere.
$endgroup$
– J.G.
Jan 22 at 7:31
1
1
$begingroup$
+1. I knew there'd be a Glasser solution somewhere.
$endgroup$
– J.G.
Jan 22 at 7:31
$begingroup$
+1. I knew there'd be a Glasser solution somewhere.
$endgroup$
– J.G.
Jan 22 at 7:31
add a comment |
$begingroup$
Here is another way to get to the same point as what @Sangchul Lee gives.
Let
$$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Then
$$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
begin{align}
I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
&= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
end{align}
On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
begin{align}
I &= int_0^infty frac{du}{(u^2 + 1)^3}\
&= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
&= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
&= frac{3pi}{16},
end{align}
as expected.
$endgroup$
add a comment |
$begingroup$
Here is another way to get to the same point as what @Sangchul Lee gives.
Let
$$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Then
$$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
begin{align}
I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
&= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
end{align}
On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
begin{align}
I &= int_0^infty frac{du}{(u^2 + 1)^3}\
&= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
&= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
&= frac{3pi}{16},
end{align}
as expected.
$endgroup$
add a comment |
$begingroup$
Here is another way to get to the same point as what @Sangchul Lee gives.
Let
$$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Then
$$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
begin{align}
I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
&= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
end{align}
On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
begin{align}
I &= int_0^infty frac{du}{(u^2 + 1)^3}\
&= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
&= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
&= frac{3pi}{16},
end{align}
as expected.
$endgroup$
Here is another way to get to the same point as what @Sangchul Lee gives.
Let
$$I = int_0^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Then
$$I = int_0^1 frac{x^4}{(x^4 - x^2 + 1)^4} , dx + int_1^infty frac{x^4}{(x^4 - x^2 + 1)^4} , dx.$$
Enforcing a substitution of $x mapsto 1/x$ in the right most integral leads to
begin{align}
I &= int_0^1 frac{x^4 (1 + x^6)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)(x^4 - x^2 + 1)}{(x^4 - x^2 + 1)^4} , dx\
&= int_0^1 frac{x^4 (1 + x^2)}{(x^4 - x^2 + 1)^3} , dx\
&= int_0^1 frac{1 + 1/x^2}{left [left (x - frac{1}{x} right )^2 + 1 right ]^3} , dx.
end{align}
On setting $-u = x - 1/x$, $-du = (1 + 1/x^2) , dx$ one has
begin{align}
I &= int_0^infty frac{du}{(u^2 + 1)^3}\
&= int_0^{frac{pi}{2}} cos^4 theta , dtheta\
&= int_0^{frac{pi}{2}} left (frac{1}{2} cos 2theta + frac{1}{8} cos 4theta + frac{3}{8} right ) , dtheta\
&= frac{3pi}{16},
end{align}
as expected.
answered Jan 22 at 7:15
omegadotomegadot
6,3972829
6,3972829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082789%2fint-limits-0-infty-x4-over-x4-x214-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

$begingroup$
The integral is same as$$int_{0}^{infty} frac{x^{4}(x^{2}+1)^{4}}{(x^{6}+1)^{4}}dx$$
$endgroup$
– Seewoo Lee
Jan 22 at 5:54
$begingroup$
Partial fractions?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:54
4
$begingroup$
I remember the days when people just did integrations rather than Google them.
$endgroup$
– Lord Shark the Unknown
Jan 22 at 5:55
$begingroup$
These days are over!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 6:00
2
$begingroup$
Note that in $0$ and $infty$ the rational and logarithmic contribution is zero. Remains only the $arctan$ value.
$endgroup$
– zwim
Jan 22 at 6:41