$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$ for all bounded measurable $f$ using the monotone class theorem
$begingroup$
Let $X,Y$ be independent rv's.
For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
$$f_X(y)= left{
begin{array}{lr}
mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
0 & : text{else}
end{array}
right..$$
Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
$$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$
How do we prove that $C=M_b$?
If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.
Therefore we want
1) $1_{mathbb{R}^2}in C$:
This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$
2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:
So we want to show
$$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
Can we do this by using conditional monotone convergence and say
$$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
and since
$$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
by regular MCT, it follows?
3) for all $Bin Pi$, $1_Bin C$:
Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
Then for $Ainsigma(Y)$
$begin{align*}
int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
&=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
&=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
&=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
&=?\
&=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
end{align*}$
Is this correct? Which steps am I missing?
measure-theory random-variables conditional-expectation measurable-functions monotone-class-theorem
$endgroup$
add a comment |
$begingroup$
Let $X,Y$ be independent rv's.
For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
$$f_X(y)= left{
begin{array}{lr}
mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
0 & : text{else}
end{array}
right..$$
Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
$$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$
How do we prove that $C=M_b$?
If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.
Therefore we want
1) $1_{mathbb{R}^2}in C$:
This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$
2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:
So we want to show
$$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
Can we do this by using conditional monotone convergence and say
$$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
and since
$$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
by regular MCT, it follows?
3) for all $Bin Pi$, $1_Bin C$:
Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
Then for $Ainsigma(Y)$
$begin{align*}
int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
&=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
&=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
&=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
&=?\
&=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
end{align*}$
Is this correct? Which steps am I missing?
measure-theory random-variables conditional-expectation measurable-functions monotone-class-theorem
$endgroup$
add a comment |
$begingroup$
Let $X,Y$ be independent rv's.
For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
$$f_X(y)= left{
begin{array}{lr}
mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
0 & : text{else}
end{array}
right..$$
Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
$$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$
How do we prove that $C=M_b$?
If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.
Therefore we want
1) $1_{mathbb{R}^2}in C$:
This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$
2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:
So we want to show
$$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
Can we do this by using conditional monotone convergence and say
$$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
and since
$$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
by regular MCT, it follows?
3) for all $Bin Pi$, $1_Bin C$:
Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
Then for $Ainsigma(Y)$
$begin{align*}
int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
&=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
&=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
&=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
&=?\
&=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
end{align*}$
Is this correct? Which steps am I missing?
measure-theory random-variables conditional-expectation measurable-functions monotone-class-theorem
$endgroup$
Let $X,Y$ be independent rv's.
For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
$$f_X(y)= left{
begin{array}{lr}
mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
0 & : text{else}
end{array}
right..$$
Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
$$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$
How do we prove that $C=M_b$?
If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.
Therefore we want
1) $1_{mathbb{R}^2}in C$:
This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$
2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:
So we want to show
$$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
Can we do this by using conditional monotone convergence and say
$$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
and since
$$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
by regular MCT, it follows?
3) for all $Bin Pi$, $1_Bin C$:
Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
Then for $Ainsigma(Y)$
$begin{align*}
int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
&=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
&=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
&=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
&=?\
&=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
end{align*}$
Is this correct? Which steps am I missing?
measure-theory random-variables conditional-expectation measurable-functions monotone-class-theorem
measure-theory random-variables conditional-expectation measurable-functions monotone-class-theorem
edited Mar 4 at 9:52
Joachim Doyle
asked Jan 29 at 11:27
Joachim DoyleJoachim Doyle
818
818
add a comment |
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092056%2fmathbbefx-yy-mathbbefx-y-for-all-bounded-measurable-f-using-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092056%2fmathbbefx-yy-mathbbefx-y-for-all-bounded-measurable-f-using-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown