$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$ for all bounded measurable $f$ using the monotone class theorem












1












$begingroup$


Let $X,Y$ be independent rv's.

For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
$$f_X(y)= left{
begin{array}{lr}
mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
0 & : text{else}
end{array}
right..$$

Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
$$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$




How do we prove that $C=M_b$?




If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.

Therefore we want
1) $1_{mathbb{R}^2}in C$:

This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$



2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:

So we want to show
$$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
Can we do this by using conditional monotone convergence and say
$$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
and since
$$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
by regular MCT, it follows?



3) for all $Bin Pi$, $1_Bin C$:

Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
Then for $Ainsigma(Y)$
$begin{align*}
int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
&=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
&=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
&=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
&=?\
&=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
end{align*}$


Is this correct? Which steps am I missing?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $X,Y$ be independent rv's.

    For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
    $$f_X(y)= left{
    begin{array}{lr}
    mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
    0 & : text{else}
    end{array}
    right..$$

    Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
    $$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$




    How do we prove that $C=M_b$?




    If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.

    Therefore we want
    1) $1_{mathbb{R}^2}in C$:

    This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$



    2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:

    So we want to show
    $$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
    Can we do this by using conditional monotone convergence and say
    $$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
    and since
    $$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
    by regular MCT, it follows?



    3) for all $Bin Pi$, $1_Bin C$:

    Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
    Then for $Ainsigma(Y)$
    $begin{align*}
    int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
    &=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
    &=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
    &=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
    &=?\
    &=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
    end{align*}$


    Is this correct? Which steps am I missing?










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Let $X,Y$ be independent rv's.

      For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
      $$f_X(y)= left{
      begin{array}{lr}
      mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
      0 & : text{else}
      end{array}
      right..$$

      Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
      $$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$




      How do we prove that $C=M_b$?




      If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.

      Therefore we want
      1) $1_{mathbb{R}^2}in C$:

      This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$



      2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:

      So we want to show
      $$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
      Can we do this by using conditional monotone convergence and say
      $$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
      and since
      $$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
      by regular MCT, it follows?



      3) for all $Bin Pi$, $1_Bin C$:

      Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
      Then for $Ainsigma(Y)$
      $begin{align*}
      int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
      &=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
      &=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
      &=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
      &=?\
      &=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
      end{align*}$


      Is this correct? Which steps am I missing?










      share|cite|improve this question











      $endgroup$




      Let $X,Y$ be independent rv's.

      For $f:mathbb{R}^2tomathbb{R}$ measurable we have $f_X:mathbb{R}tomathbb{R}$ where
      $$f_X(y)= left{
      begin{array}{lr}
      mathbb{E}[f(X,y)] & : mathbb{E}|f(X,y)|<infty\
      0 & : text{else}
      end{array}
      right..$$

      Let $M_b$ be the set of all bounded measurable functions $mathbb{R}^2tomathbb{R}$ and
      $$C={fin M_b: mathbb{E}[f(X,Y)|Y]=f_X(Y)}.$$




      How do we prove that $C=M_b$?




      If we use the monotone class theorem, then for a $pi-$system $Pi$ that generates $mathcal{B}^2$ we can show that $M_bsubset C$.

      Therefore we want
      1) $1_{mathbb{R}^2}in C$:

      This is clear since for $Ainsigma(Y)$ we have $$int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)|Y]dmathbb{P}=int_A1_{mathbb{R}^2}(X,Y)dmathbb{P}=int_A1dmathbb{P}=int_Amathbb{E}[1_{mathbb{R}^2}(X,Y)]dmathbb{P}.$$



      2) for an increasing, non-negative sequence $(f_n)_n$ in $C$, where $f_nto f$ with $f$ bounded, then $fin C$:

      So we want to show
      $$mathbb{E}[f(X,Y)|Y]=mathbb{E}[f(X,Y)]$$
      Can we do this by using conditional monotone convergence and say
      $$mathbb{E}[f_n(X,Y)|Y]tomathbb{E}[f(X,Y)|Y]$$
      and since
      $$mathbb{E}[f_n(X,Y)]tomathbb{E}[f(X,Y)]$$
      by regular MCT, it follows?



      3) for all $Bin Pi$, $1_Bin C$:

      Can we take $Pi={(a,b)times (c,d):a<b,c<dinmathbb{R}}$?
      Then for $Ainsigma(Y)$
      $begin{align*}
      int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)|Y]dmathbb{P}&=int_A1_{(a,b)times (c,d)}(X,Y)dmathbb{P}\
      &=mathbb{P}[Acap(X,Y)in(a,b)times (c,d)]\
      &=mathbb{P}[Acap{Xin(a,b)}]mathbb{P}[Acap{Yin (c,d)}]\
      &=int_A1_{Xin(a,b)}dmathbb{P}cdotint_A1_{Yin(c,d)}dmathbb{P}\
      &=?\
      &=int_Amathbb{E}[1_{(a,b)times (c,d)}(X,Y)]dmathbb{P}.
      end{align*}$


      Is this correct? Which steps am I missing?







      measure-theory random-variables conditional-expectation measurable-functions monotone-class-theorem






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 4 at 9:52







      Joachim Doyle

















      asked Jan 29 at 11:27









      Joachim DoyleJoachim Doyle

      818




      818






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092056%2fmathbbefx-yy-mathbbefx-y-for-all-bounded-measurable-f-using-t%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092056%2fmathbbefx-yy-mathbbefx-y-for-all-bounded-measurable-f-using-t%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          Npm cannot find a required file even through it is in the searched directory

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith