ML inequality on $|int_{gamma} e^{iaz^{2}}dz|$ such that $z=Re^{itheta},theta in [0,frac{pi}{4}]$
$begingroup$
On a contour defined by sector of radius $R$ making an angle of $frac{pi}{4}$, I applied the ML inequality on the curvy(angular) part ofcontour and this is what i found $|int_{gamma} e^{iaz^{2}}dz|leqfrac{pi R}{4}$ since $|f(z)|leq 1$ and $L=frac{pi R}{4}$
But this doesn't seem right as $lim_{Rtoinfty}frac{pi R}{4}=infty$,even though I know that it should go to zero.
I am evaluating the fresnel integrals using this.
complex-analysis contour-integration
$endgroup$
add a comment |
$begingroup$
On a contour defined by sector of radius $R$ making an angle of $frac{pi}{4}$, I applied the ML inequality on the curvy(angular) part ofcontour and this is what i found $|int_{gamma} e^{iaz^{2}}dz|leqfrac{pi R}{4}$ since $|f(z)|leq 1$ and $L=frac{pi R}{4}$
But this doesn't seem right as $lim_{Rtoinfty}frac{pi R}{4}=infty$,even though I know that it should go to zero.
I am evaluating the fresnel integrals using this.
complex-analysis contour-integration
$endgroup$
add a comment |
$begingroup$
On a contour defined by sector of radius $R$ making an angle of $frac{pi}{4}$, I applied the ML inequality on the curvy(angular) part ofcontour and this is what i found $|int_{gamma} e^{iaz^{2}}dz|leqfrac{pi R}{4}$ since $|f(z)|leq 1$ and $L=frac{pi R}{4}$
But this doesn't seem right as $lim_{Rtoinfty}frac{pi R}{4}=infty$,even though I know that it should go to zero.
I am evaluating the fresnel integrals using this.
complex-analysis contour-integration
$endgroup$
On a contour defined by sector of radius $R$ making an angle of $frac{pi}{4}$, I applied the ML inequality on the curvy(angular) part ofcontour and this is what i found $|int_{gamma} e^{iaz^{2}}dz|leqfrac{pi R}{4}$ since $|f(z)|leq 1$ and $L=frac{pi R}{4}$
But this doesn't seem right as $lim_{Rtoinfty}frac{pi R}{4}=infty$,even though I know that it should go to zero.
I am evaluating the fresnel integrals using this.
complex-analysis contour-integration
complex-analysis contour-integration
edited Jan 28 at 13:25
Dylan
14.2k31127
14.2k31127
asked Jan 28 at 9:29


ben tenysonben tenyson
414
414
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that
$$ leftvert int_{gamma} e^{iaz^2} dz rightvert le int_{gamma} leftvert e^{iaz^2} rightvert leftvert dz rightvert = int_0^{pi/4} e^{-aR^2sin 2theta} R dtheta $$
You can show geometrically that on $theta in [0,pi/4]$, the function $g(theta) = sin 2theta$ lies completely above its secant line, i.e.
$$ sin 2theta ge frac{4}{pi}theta implies e^{-aR^2sin2theta} le e^{-4aR^2 theta /pi} $$
Hence, the integral is bounded above by
$$ int_0^{pi/4} e^{-4aR^2 theta /pi} R dtheta = frac{pi}{4aR}left(1 - e^{-aR^2}right) $$
which tends to $0$ as $R to infty$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090654%2fml-inequality-on-int-gamma-eiaz2dz-such-that-z-rei-theta-thet%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
$$ leftvert int_{gamma} e^{iaz^2} dz rightvert le int_{gamma} leftvert e^{iaz^2} rightvert leftvert dz rightvert = int_0^{pi/4} e^{-aR^2sin 2theta} R dtheta $$
You can show geometrically that on $theta in [0,pi/4]$, the function $g(theta) = sin 2theta$ lies completely above its secant line, i.e.
$$ sin 2theta ge frac{4}{pi}theta implies e^{-aR^2sin2theta} le e^{-4aR^2 theta /pi} $$
Hence, the integral is bounded above by
$$ int_0^{pi/4} e^{-4aR^2 theta /pi} R dtheta = frac{pi}{4aR}left(1 - e^{-aR^2}right) $$
which tends to $0$ as $R to infty$
$endgroup$
add a comment |
$begingroup$
Note that
$$ leftvert int_{gamma} e^{iaz^2} dz rightvert le int_{gamma} leftvert e^{iaz^2} rightvert leftvert dz rightvert = int_0^{pi/4} e^{-aR^2sin 2theta} R dtheta $$
You can show geometrically that on $theta in [0,pi/4]$, the function $g(theta) = sin 2theta$ lies completely above its secant line, i.e.
$$ sin 2theta ge frac{4}{pi}theta implies e^{-aR^2sin2theta} le e^{-4aR^2 theta /pi} $$
Hence, the integral is bounded above by
$$ int_0^{pi/4} e^{-4aR^2 theta /pi} R dtheta = frac{pi}{4aR}left(1 - e^{-aR^2}right) $$
which tends to $0$ as $R to infty$
$endgroup$
add a comment |
$begingroup$
Note that
$$ leftvert int_{gamma} e^{iaz^2} dz rightvert le int_{gamma} leftvert e^{iaz^2} rightvert leftvert dz rightvert = int_0^{pi/4} e^{-aR^2sin 2theta} R dtheta $$
You can show geometrically that on $theta in [0,pi/4]$, the function $g(theta) = sin 2theta$ lies completely above its secant line, i.e.
$$ sin 2theta ge frac{4}{pi}theta implies e^{-aR^2sin2theta} le e^{-4aR^2 theta /pi} $$
Hence, the integral is bounded above by
$$ int_0^{pi/4} e^{-4aR^2 theta /pi} R dtheta = frac{pi}{4aR}left(1 - e^{-aR^2}right) $$
which tends to $0$ as $R to infty$
$endgroup$
Note that
$$ leftvert int_{gamma} e^{iaz^2} dz rightvert le int_{gamma} leftvert e^{iaz^2} rightvert leftvert dz rightvert = int_0^{pi/4} e^{-aR^2sin 2theta} R dtheta $$
You can show geometrically that on $theta in [0,pi/4]$, the function $g(theta) = sin 2theta$ lies completely above its secant line, i.e.
$$ sin 2theta ge frac{4}{pi}theta implies e^{-aR^2sin2theta} le e^{-4aR^2 theta /pi} $$
Hence, the integral is bounded above by
$$ int_0^{pi/4} e^{-4aR^2 theta /pi} R dtheta = frac{pi}{4aR}left(1 - e^{-aR^2}right) $$
which tends to $0$ as $R to infty$
answered Jan 28 at 13:33
DylanDylan
14.2k31127
14.2k31127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090654%2fml-inequality-on-int-gamma-eiaz2dz-such-that-z-rei-theta-thet%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown