Multivariable Differentials Problems
$begingroup$
I am having a lot of trouble with this question:
For $j=1,...,n$, define the function $f_{j}$ on $R^{n}$ {0} by $f_{j}(x)=x_{j}$/|x|. Show that $sum_{i=1}^n x_{j}df_{j}$=0.
multivariable-calculus
$endgroup$
add a comment |
$begingroup$
I am having a lot of trouble with this question:
For $j=1,...,n$, define the function $f_{j}$ on $R^{n}$ {0} by $f_{j}(x)=x_{j}$/|x|. Show that $sum_{i=1}^n x_{j}df_{j}$=0.
multivariable-calculus
$endgroup$
1
$begingroup$
Let's see your calculation.
$endgroup$
– Ted Shifrin
May 26 '14 at 23:39
add a comment |
$begingroup$
I am having a lot of trouble with this question:
For $j=1,...,n$, define the function $f_{j}$ on $R^{n}$ {0} by $f_{j}(x)=x_{j}$/|x|. Show that $sum_{i=1}^n x_{j}df_{j}$=0.
multivariable-calculus
$endgroup$
I am having a lot of trouble with this question:
For $j=1,...,n$, define the function $f_{j}$ on $R^{n}$ {0} by $f_{j}(x)=x_{j}$/|x|. Show that $sum_{i=1}^n x_{j}df_{j}$=0.
multivariable-calculus
multivariable-calculus
asked May 26 '14 at 23:34
user153009user153009
359211
359211
1
$begingroup$
Let's see your calculation.
$endgroup$
– Ted Shifrin
May 26 '14 at 23:39
add a comment |
1
$begingroup$
Let's see your calculation.
$endgroup$
– Ted Shifrin
May 26 '14 at 23:39
1
1
$begingroup$
Let's see your calculation.
$endgroup$
– Ted Shifrin
May 26 '14 at 23:39
$begingroup$
Let's see your calculation.
$endgroup$
– Ted Shifrin
May 26 '14 at 23:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Here’s a direct calculation:
For each j, $df_j = sum_{i=1}^nfrac{partial f_j}{partial x_i}dx_i$.
By the product rule, $frac{partial f_j}{partial x_j} = frac{1}{|x|}-frac{x_j^2}{|x|^3}$. Meanwhile, if i≠j, then $frac{partial f_j}{partial x_i} = -frac{x_ix_j}{|x|^3}$.
Thus, $df_j = frac{dx_j}{|x|}-sum_{i=1}^nfrac{x_ix_j}{|x|^3}dx_i$.
Multiplying by $x_j$ and summing on $j$ gives $sum_{j=1}^nx_jdx_j = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{j=1}^nsum_{i=1}^nfrac{x_ix_j^2}{|x|^3}dx_i$
$= sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nsum_{j=1}^nfrac{x_ix_j^2}{|x|^3}dx_i = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nfrac{x_i}{|x|}dx_i = 0$.
$endgroup$
add a comment |
$begingroup$
We have $f_i=frac{x_i}{|x|}$ thus
$$sum f_i^2=1$$
The differential is therefore
$$sum 2 f_i df_i =0$$
or
$$sum frac{x_i}{|x|} df_i =0$$ now multipy by $|x|$ to get
$$sum x_i df_i =0$$
A direct calculation should also work but this is more conceptual.
$endgroup$
$begingroup$
Thank you but how did you know to differentiate the inside term like that (is there a rule/concept that allows you to do that).
$endgroup$
– user153009
May 27 '14 at 0:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f810584%2fmultivariable-differentials-problems%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here’s a direct calculation:
For each j, $df_j = sum_{i=1}^nfrac{partial f_j}{partial x_i}dx_i$.
By the product rule, $frac{partial f_j}{partial x_j} = frac{1}{|x|}-frac{x_j^2}{|x|^3}$. Meanwhile, if i≠j, then $frac{partial f_j}{partial x_i} = -frac{x_ix_j}{|x|^3}$.
Thus, $df_j = frac{dx_j}{|x|}-sum_{i=1}^nfrac{x_ix_j}{|x|^3}dx_i$.
Multiplying by $x_j$ and summing on $j$ gives $sum_{j=1}^nx_jdx_j = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{j=1}^nsum_{i=1}^nfrac{x_ix_j^2}{|x|^3}dx_i$
$= sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nsum_{j=1}^nfrac{x_ix_j^2}{|x|^3}dx_i = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nfrac{x_i}{|x|}dx_i = 0$.
$endgroup$
add a comment |
$begingroup$
Here’s a direct calculation:
For each j, $df_j = sum_{i=1}^nfrac{partial f_j}{partial x_i}dx_i$.
By the product rule, $frac{partial f_j}{partial x_j} = frac{1}{|x|}-frac{x_j^2}{|x|^3}$. Meanwhile, if i≠j, then $frac{partial f_j}{partial x_i} = -frac{x_ix_j}{|x|^3}$.
Thus, $df_j = frac{dx_j}{|x|}-sum_{i=1}^nfrac{x_ix_j}{|x|^3}dx_i$.
Multiplying by $x_j$ and summing on $j$ gives $sum_{j=1}^nx_jdx_j = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{j=1}^nsum_{i=1}^nfrac{x_ix_j^2}{|x|^3}dx_i$
$= sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nsum_{j=1}^nfrac{x_ix_j^2}{|x|^3}dx_i = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nfrac{x_i}{|x|}dx_i = 0$.
$endgroup$
add a comment |
$begingroup$
Here’s a direct calculation:
For each j, $df_j = sum_{i=1}^nfrac{partial f_j}{partial x_i}dx_i$.
By the product rule, $frac{partial f_j}{partial x_j} = frac{1}{|x|}-frac{x_j^2}{|x|^3}$. Meanwhile, if i≠j, then $frac{partial f_j}{partial x_i} = -frac{x_ix_j}{|x|^3}$.
Thus, $df_j = frac{dx_j}{|x|}-sum_{i=1}^nfrac{x_ix_j}{|x|^3}dx_i$.
Multiplying by $x_j$ and summing on $j$ gives $sum_{j=1}^nx_jdx_j = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{j=1}^nsum_{i=1}^nfrac{x_ix_j^2}{|x|^3}dx_i$
$= sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nsum_{j=1}^nfrac{x_ix_j^2}{|x|^3}dx_i = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nfrac{x_i}{|x|}dx_i = 0$.
$endgroup$
Here’s a direct calculation:
For each j, $df_j = sum_{i=1}^nfrac{partial f_j}{partial x_i}dx_i$.
By the product rule, $frac{partial f_j}{partial x_j} = frac{1}{|x|}-frac{x_j^2}{|x|^3}$. Meanwhile, if i≠j, then $frac{partial f_j}{partial x_i} = -frac{x_ix_j}{|x|^3}$.
Thus, $df_j = frac{dx_j}{|x|}-sum_{i=1}^nfrac{x_ix_j}{|x|^3}dx_i$.
Multiplying by $x_j$ and summing on $j$ gives $sum_{j=1}^nx_jdx_j = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{j=1}^nsum_{i=1}^nfrac{x_ix_j^2}{|x|^3}dx_i$
$= sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nsum_{j=1}^nfrac{x_ix_j^2}{|x|^3}dx_i = sum_{j=1}^nfrac{x_j}{|x|}dx_j-sum_{i=1}^nfrac{x_i}{|x|}dx_i = 0$.
edited Jan 22 at 1:54
answered May 27 '14 at 0:56
Sarah T.Sarah T.
1933
1933
add a comment |
add a comment |
$begingroup$
We have $f_i=frac{x_i}{|x|}$ thus
$$sum f_i^2=1$$
The differential is therefore
$$sum 2 f_i df_i =0$$
or
$$sum frac{x_i}{|x|} df_i =0$$ now multipy by $|x|$ to get
$$sum x_i df_i =0$$
A direct calculation should also work but this is more conceptual.
$endgroup$
$begingroup$
Thank you but how did you know to differentiate the inside term like that (is there a rule/concept that allows you to do that).
$endgroup$
– user153009
May 27 '14 at 0:37
add a comment |
$begingroup$
We have $f_i=frac{x_i}{|x|}$ thus
$$sum f_i^2=1$$
The differential is therefore
$$sum 2 f_i df_i =0$$
or
$$sum frac{x_i}{|x|} df_i =0$$ now multipy by $|x|$ to get
$$sum x_i df_i =0$$
A direct calculation should also work but this is more conceptual.
$endgroup$
$begingroup$
Thank you but how did you know to differentiate the inside term like that (is there a rule/concept that allows you to do that).
$endgroup$
– user153009
May 27 '14 at 0:37
add a comment |
$begingroup$
We have $f_i=frac{x_i}{|x|}$ thus
$$sum f_i^2=1$$
The differential is therefore
$$sum 2 f_i df_i =0$$
or
$$sum frac{x_i}{|x|} df_i =0$$ now multipy by $|x|$ to get
$$sum x_i df_i =0$$
A direct calculation should also work but this is more conceptual.
$endgroup$
We have $f_i=frac{x_i}{|x|}$ thus
$$sum f_i^2=1$$
The differential is therefore
$$sum 2 f_i df_i =0$$
or
$$sum frac{x_i}{|x|} df_i =0$$ now multipy by $|x|$ to get
$$sum x_i df_i =0$$
A direct calculation should also work but this is more conceptual.
answered May 27 '14 at 0:28
Rene SchipperusRene Schipperus
32.4k11960
32.4k11960
$begingroup$
Thank you but how did you know to differentiate the inside term like that (is there a rule/concept that allows you to do that).
$endgroup$
– user153009
May 27 '14 at 0:37
add a comment |
$begingroup$
Thank you but how did you know to differentiate the inside term like that (is there a rule/concept that allows you to do that).
$endgroup$
– user153009
May 27 '14 at 0:37
$begingroup$
Thank you but how did you know to differentiate the inside term like that (is there a rule/concept that allows you to do that).
$endgroup$
– user153009
May 27 '14 at 0:37
$begingroup$
Thank you but how did you know to differentiate the inside term like that (is there a rule/concept that allows you to do that).
$endgroup$
– user153009
May 27 '14 at 0:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f810584%2fmultivariable-differentials-problems%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Let's see your calculation.
$endgroup$
– Ted Shifrin
May 26 '14 at 23:39