Solving differential equation with delta function in nonhomogeneous part
$begingroup$
I have the following equation, which I need to solve:
$left(frac{mathrm{d}^2}{mathrm{d} x^2}-a^2right)A(x)=c delta(x-b)$.
The solution should be in form
$A(x)=C_1 e^{-x a}+C_2 e^{x a}+f(x)$,
but I am not sure with the non-homogeneous part $f(x)$. Mathematica offers the solution with Heaviside theta function
$f(x)=left[c e^{-a b - a x} (-e^{2 a b} + e^{2 a x}) Theta(-b + x)right]/(2 a)$,
however in literature I found the solution in form
$f(x)=left[c e^{-a lvert x-b rvert}right]/(2 a)$.
Are these two forms equivalent?
ordinary-differential-equations dirac-delta
$endgroup$
add a comment |
$begingroup$
I have the following equation, which I need to solve:
$left(frac{mathrm{d}^2}{mathrm{d} x^2}-a^2right)A(x)=c delta(x-b)$.
The solution should be in form
$A(x)=C_1 e^{-x a}+C_2 e^{x a}+f(x)$,
but I am not sure with the non-homogeneous part $f(x)$. Mathematica offers the solution with Heaviside theta function
$f(x)=left[c e^{-a b - a x} (-e^{2 a b} + e^{2 a x}) Theta(-b + x)right]/(2 a)$,
however in literature I found the solution in form
$f(x)=left[c e^{-a lvert x-b rvert}right]/(2 a)$.
Are these two forms equivalent?
ordinary-differential-equations dirac-delta
$endgroup$
1
$begingroup$
The solution Mathematica offers would vanish for $x<b$, which would seem to preclude it agreeing with the literature result which doesn't.
$endgroup$
– Semiclassical
Jun 16 '16 at 15:06
1
$begingroup$
Typo in Mathematica's solution?
$endgroup$
– Did
Jun 16 '16 at 15:09
add a comment |
$begingroup$
I have the following equation, which I need to solve:
$left(frac{mathrm{d}^2}{mathrm{d} x^2}-a^2right)A(x)=c delta(x-b)$.
The solution should be in form
$A(x)=C_1 e^{-x a}+C_2 e^{x a}+f(x)$,
but I am not sure with the non-homogeneous part $f(x)$. Mathematica offers the solution with Heaviside theta function
$f(x)=left[c e^{-a b - a x} (-e^{2 a b} + e^{2 a x}) Theta(-b + x)right]/(2 a)$,
however in literature I found the solution in form
$f(x)=left[c e^{-a lvert x-b rvert}right]/(2 a)$.
Are these two forms equivalent?
ordinary-differential-equations dirac-delta
$endgroup$
I have the following equation, which I need to solve:
$left(frac{mathrm{d}^2}{mathrm{d} x^2}-a^2right)A(x)=c delta(x-b)$.
The solution should be in form
$A(x)=C_1 e^{-x a}+C_2 e^{x a}+f(x)$,
but I am not sure with the non-homogeneous part $f(x)$. Mathematica offers the solution with Heaviside theta function
$f(x)=left[c e^{-a b - a x} (-e^{2 a b} + e^{2 a x}) Theta(-b + x)right]/(2 a)$,
however in literature I found the solution in form
$f(x)=left[c e^{-a lvert x-b rvert}right]/(2 a)$.
Are these two forms equivalent?
ordinary-differential-equations dirac-delta
ordinary-differential-equations dirac-delta
asked Jun 16 '16 at 14:51
infinityinfinity
81
81
1
$begingroup$
The solution Mathematica offers would vanish for $x<b$, which would seem to preclude it agreeing with the literature result which doesn't.
$endgroup$
– Semiclassical
Jun 16 '16 at 15:06
1
$begingroup$
Typo in Mathematica's solution?
$endgroup$
– Did
Jun 16 '16 at 15:09
add a comment |
1
$begingroup$
The solution Mathematica offers would vanish for $x<b$, which would seem to preclude it agreeing with the literature result which doesn't.
$endgroup$
– Semiclassical
Jun 16 '16 at 15:06
1
$begingroup$
Typo in Mathematica's solution?
$endgroup$
– Did
Jun 16 '16 at 15:09
1
1
$begingroup$
The solution Mathematica offers would vanish for $x<b$, which would seem to preclude it agreeing with the literature result which doesn't.
$endgroup$
– Semiclassical
Jun 16 '16 at 15:06
$begingroup$
The solution Mathematica offers would vanish for $x<b$, which would seem to preclude it agreeing with the literature result which doesn't.
$endgroup$
– Semiclassical
Jun 16 '16 at 15:06
1
1
$begingroup$
Typo in Mathematica's solution?
$endgroup$
– Did
Jun 16 '16 at 15:09
$begingroup$
Typo in Mathematica's solution?
$endgroup$
– Did
Jun 16 '16 at 15:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The two forms are equivalent, but with different coefficients. The boundary conditions have to be taken into account in the relationships between the respective coefficients.
$$A''(x)-a^2A(x)=cdelta(x-b)$$
Let : $A(x)=e^{ax}Y(x) quadtoquad Y''(x)+2aY'(x)=c delta(x-b)e^{-ax}$
$Y'(x)=e^{-2ax}y(x) quadtoquad y'(x)=cdelta(x-b)e^{ax}$
$$y(x)=int cdelta(x-b)e^{ax}dx = c:e^{ab}theta(x-b)+C_0$$
$theta$ is the Heaviside step function.
$Y'(x)=e^{-2ax}y(x) = c:e^{ab}e^{-2ax}theta(x-b)+Ce^{-2ax}$
$Y(x)= ce^{ab}int e^{-2ax}theta(x-b)dx+C_1e^{-2ax}+C_2$
$int e^{-2ax}theta(x-b)dx= frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)$
$$Y(x)= ce^{ab} frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-2ax}+C_2$$
$A(x)=e^{ax}Y(x)=ce^{ab} frac{1}{2a}e^{ax}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$
$$A(x)=cfrac{1}{2a}left(e^{a(x-b)}-e^{-a(x-b)} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$$
This result is the same as the Mathematica result.
This is equivalent to : $quad A(x)=begin{cases}
C_1e^{-ax}+C_2e^{ax} quadtext{if } x<b\
C_3e^{-ax}+C_4e^{ax} quadtext{if } x>bend{cases}$
because both are function of $e^{ax}$ and $e^{-ax}$ but of course with different constant coefficients depending on the boundary conditions.
Comparison to the expected result :
$$quad A(x)=cfrac{1}{2a}e^{-a|x-b|} +c_1e^{-ax}+c_2e^{ax} $$
$$quad A(x)= begin{cases}
C'_1e^{-ax}+C'_2 e^{ax} quadtext{if } x<b\
C'_3e^{-ax}+C'_4 e^{ax} quadtext{if } x<b
end{cases}$$
because both are function of $e^{ax}$ and $e^{-ax}$ but with different coefficients depending on the boundary conditions.
Thus, the two forms of results (one from mathematica, the other from the literature) are equivalent, insofar the coefficients are related one to another according to the boundary conditions.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1828602%2fsolving-differential-equation-with-delta-function-in-nonhomogeneous-part%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The two forms are equivalent, but with different coefficients. The boundary conditions have to be taken into account in the relationships between the respective coefficients.
$$A''(x)-a^2A(x)=cdelta(x-b)$$
Let : $A(x)=e^{ax}Y(x) quadtoquad Y''(x)+2aY'(x)=c delta(x-b)e^{-ax}$
$Y'(x)=e^{-2ax}y(x) quadtoquad y'(x)=cdelta(x-b)e^{ax}$
$$y(x)=int cdelta(x-b)e^{ax}dx = c:e^{ab}theta(x-b)+C_0$$
$theta$ is the Heaviside step function.
$Y'(x)=e^{-2ax}y(x) = c:e^{ab}e^{-2ax}theta(x-b)+Ce^{-2ax}$
$Y(x)= ce^{ab}int e^{-2ax}theta(x-b)dx+C_1e^{-2ax}+C_2$
$int e^{-2ax}theta(x-b)dx= frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)$
$$Y(x)= ce^{ab} frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-2ax}+C_2$$
$A(x)=e^{ax}Y(x)=ce^{ab} frac{1}{2a}e^{ax}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$
$$A(x)=cfrac{1}{2a}left(e^{a(x-b)}-e^{-a(x-b)} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$$
This result is the same as the Mathematica result.
This is equivalent to : $quad A(x)=begin{cases}
C_1e^{-ax}+C_2e^{ax} quadtext{if } x<b\
C_3e^{-ax}+C_4e^{ax} quadtext{if } x>bend{cases}$
because both are function of $e^{ax}$ and $e^{-ax}$ but of course with different constant coefficients depending on the boundary conditions.
Comparison to the expected result :
$$quad A(x)=cfrac{1}{2a}e^{-a|x-b|} +c_1e^{-ax}+c_2e^{ax} $$
$$quad A(x)= begin{cases}
C'_1e^{-ax}+C'_2 e^{ax} quadtext{if } x<b\
C'_3e^{-ax}+C'_4 e^{ax} quadtext{if } x<b
end{cases}$$
because both are function of $e^{ax}$ and $e^{-ax}$ but with different coefficients depending on the boundary conditions.
Thus, the two forms of results (one from mathematica, the other from the literature) are equivalent, insofar the coefficients are related one to another according to the boundary conditions.
$endgroup$
add a comment |
$begingroup$
The two forms are equivalent, but with different coefficients. The boundary conditions have to be taken into account in the relationships between the respective coefficients.
$$A''(x)-a^2A(x)=cdelta(x-b)$$
Let : $A(x)=e^{ax}Y(x) quadtoquad Y''(x)+2aY'(x)=c delta(x-b)e^{-ax}$
$Y'(x)=e^{-2ax}y(x) quadtoquad y'(x)=cdelta(x-b)e^{ax}$
$$y(x)=int cdelta(x-b)e^{ax}dx = c:e^{ab}theta(x-b)+C_0$$
$theta$ is the Heaviside step function.
$Y'(x)=e^{-2ax}y(x) = c:e^{ab}e^{-2ax}theta(x-b)+Ce^{-2ax}$
$Y(x)= ce^{ab}int e^{-2ax}theta(x-b)dx+C_1e^{-2ax}+C_2$
$int e^{-2ax}theta(x-b)dx= frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)$
$$Y(x)= ce^{ab} frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-2ax}+C_2$$
$A(x)=e^{ax}Y(x)=ce^{ab} frac{1}{2a}e^{ax}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$
$$A(x)=cfrac{1}{2a}left(e^{a(x-b)}-e^{-a(x-b)} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$$
This result is the same as the Mathematica result.
This is equivalent to : $quad A(x)=begin{cases}
C_1e^{-ax}+C_2e^{ax} quadtext{if } x<b\
C_3e^{-ax}+C_4e^{ax} quadtext{if } x>bend{cases}$
because both are function of $e^{ax}$ and $e^{-ax}$ but of course with different constant coefficients depending on the boundary conditions.
Comparison to the expected result :
$$quad A(x)=cfrac{1}{2a}e^{-a|x-b|} +c_1e^{-ax}+c_2e^{ax} $$
$$quad A(x)= begin{cases}
C'_1e^{-ax}+C'_2 e^{ax} quadtext{if } x<b\
C'_3e^{-ax}+C'_4 e^{ax} quadtext{if } x<b
end{cases}$$
because both are function of $e^{ax}$ and $e^{-ax}$ but with different coefficients depending on the boundary conditions.
Thus, the two forms of results (one from mathematica, the other from the literature) are equivalent, insofar the coefficients are related one to another according to the boundary conditions.
$endgroup$
add a comment |
$begingroup$
The two forms are equivalent, but with different coefficients. The boundary conditions have to be taken into account in the relationships between the respective coefficients.
$$A''(x)-a^2A(x)=cdelta(x-b)$$
Let : $A(x)=e^{ax}Y(x) quadtoquad Y''(x)+2aY'(x)=c delta(x-b)e^{-ax}$
$Y'(x)=e^{-2ax}y(x) quadtoquad y'(x)=cdelta(x-b)e^{ax}$
$$y(x)=int cdelta(x-b)e^{ax}dx = c:e^{ab}theta(x-b)+C_0$$
$theta$ is the Heaviside step function.
$Y'(x)=e^{-2ax}y(x) = c:e^{ab}e^{-2ax}theta(x-b)+Ce^{-2ax}$
$Y(x)= ce^{ab}int e^{-2ax}theta(x-b)dx+C_1e^{-2ax}+C_2$
$int e^{-2ax}theta(x-b)dx= frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)$
$$Y(x)= ce^{ab} frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-2ax}+C_2$$
$A(x)=e^{ax}Y(x)=ce^{ab} frac{1}{2a}e^{ax}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$
$$A(x)=cfrac{1}{2a}left(e^{a(x-b)}-e^{-a(x-b)} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$$
This result is the same as the Mathematica result.
This is equivalent to : $quad A(x)=begin{cases}
C_1e^{-ax}+C_2e^{ax} quadtext{if } x<b\
C_3e^{-ax}+C_4e^{ax} quadtext{if } x>bend{cases}$
because both are function of $e^{ax}$ and $e^{-ax}$ but of course with different constant coefficients depending on the boundary conditions.
Comparison to the expected result :
$$quad A(x)=cfrac{1}{2a}e^{-a|x-b|} +c_1e^{-ax}+c_2e^{ax} $$
$$quad A(x)= begin{cases}
C'_1e^{-ax}+C'_2 e^{ax} quadtext{if } x<b\
C'_3e^{-ax}+C'_4 e^{ax} quadtext{if } x<b
end{cases}$$
because both are function of $e^{ax}$ and $e^{-ax}$ but with different coefficients depending on the boundary conditions.
Thus, the two forms of results (one from mathematica, the other from the literature) are equivalent, insofar the coefficients are related one to another according to the boundary conditions.
$endgroup$
The two forms are equivalent, but with different coefficients. The boundary conditions have to be taken into account in the relationships between the respective coefficients.
$$A''(x)-a^2A(x)=cdelta(x-b)$$
Let : $A(x)=e^{ax}Y(x) quadtoquad Y''(x)+2aY'(x)=c delta(x-b)e^{-ax}$
$Y'(x)=e^{-2ax}y(x) quadtoquad y'(x)=cdelta(x-b)e^{ax}$
$$y(x)=int cdelta(x-b)e^{ax}dx = c:e^{ab}theta(x-b)+C_0$$
$theta$ is the Heaviside step function.
$Y'(x)=e^{-2ax}y(x) = c:e^{ab}e^{-2ax}theta(x-b)+Ce^{-2ax}$
$Y(x)= ce^{ab}int e^{-2ax}theta(x-b)dx+C_1e^{-2ax}+C_2$
$int e^{-2ax}theta(x-b)dx= frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)$
$$Y(x)= ce^{ab} frac{1}{2a}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-2ax}+C_2$$
$A(x)=e^{ax}Y(x)=ce^{ab} frac{1}{2a}e^{ax}left(e^{-2ab}-e^{-2ax} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$
$$A(x)=cfrac{1}{2a}left(e^{a(x-b)}-e^{-a(x-b)} right)theta(x-b)+C_1e^{-ax}+C_2e^{ax}$$
This result is the same as the Mathematica result.
This is equivalent to : $quad A(x)=begin{cases}
C_1e^{-ax}+C_2e^{ax} quadtext{if } x<b\
C_3e^{-ax}+C_4e^{ax} quadtext{if } x>bend{cases}$
because both are function of $e^{ax}$ and $e^{-ax}$ but of course with different constant coefficients depending on the boundary conditions.
Comparison to the expected result :
$$quad A(x)=cfrac{1}{2a}e^{-a|x-b|} +c_1e^{-ax}+c_2e^{ax} $$
$$quad A(x)= begin{cases}
C'_1e^{-ax}+C'_2 e^{ax} quadtext{if } x<b\
C'_3e^{-ax}+C'_4 e^{ax} quadtext{if } x<b
end{cases}$$
because both are function of $e^{ax}$ and $e^{-ax}$ but with different coefficients depending on the boundary conditions.
Thus, the two forms of results (one from mathematica, the other from the literature) are equivalent, insofar the coefficients are related one to another according to the boundary conditions.
answered Jun 20 '16 at 8:18
JJacquelinJJacquelin
45.2k21856
45.2k21856
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1828602%2fsolving-differential-equation-with-delta-function-in-nonhomogeneous-part%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The solution Mathematica offers would vanish for $x<b$, which would seem to preclude it agreeing with the literature result which doesn't.
$endgroup$
– Semiclassical
Jun 16 '16 at 15:06
1
$begingroup$
Typo in Mathematica's solution?
$endgroup$
– Did
Jun 16 '16 at 15:09