Using AM-GM inequality to prove
$begingroup$
prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$
This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.
proof-explanation
$endgroup$
add a comment |
$begingroup$
prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$
This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.
proof-explanation
$endgroup$
add a comment |
$begingroup$
prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$
This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.
proof-explanation
$endgroup$
prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$
This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.
proof-explanation
proof-explanation
edited Jun 9 '16 at 17:36
danimal
1,8161612
1,8161612
asked Jun 9 '16 at 17:32
Gigi ChuckGigi Chuck
828
828
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Use: $$a^2+b^2+c^2ge ab+bc+ca$$
Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
$$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$
Then
$$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
$$=xyz(x+y+z)$$
$endgroup$
$begingroup$
how did the x^2 change to xz?
$endgroup$
– Gigi Chuck
Jun 9 '16 at 17:41
1
$begingroup$
we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
$endgroup$
– Roman83
Jun 9 '16 at 17:43
add a comment |
$begingroup$
AM–GM is invoked in two steps as follows:
$begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$
$endgroup$
add a comment |
$begingroup$
The inequality is equivalent to ( by expanding RHS)
$$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
By AM-GM
$$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
$$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
$$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
Adding them up we get
$$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
$$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1819975%2fusing-am-gm-inequality-to-prove%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use: $$a^2+b^2+c^2ge ab+bc+ca$$
Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
$$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$
Then
$$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
$$=xyz(x+y+z)$$
$endgroup$
$begingroup$
how did the x^2 change to xz?
$endgroup$
– Gigi Chuck
Jun 9 '16 at 17:41
1
$begingroup$
we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
$endgroup$
– Roman83
Jun 9 '16 at 17:43
add a comment |
$begingroup$
Use: $$a^2+b^2+c^2ge ab+bc+ca$$
Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
$$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$
Then
$$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
$$=xyz(x+y+z)$$
$endgroup$
$begingroup$
how did the x^2 change to xz?
$endgroup$
– Gigi Chuck
Jun 9 '16 at 17:41
1
$begingroup$
we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
$endgroup$
– Roman83
Jun 9 '16 at 17:43
add a comment |
$begingroup$
Use: $$a^2+b^2+c^2ge ab+bc+ca$$
Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
$$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$
Then
$$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
$$=xyz(x+y+z)$$
$endgroup$
Use: $$a^2+b^2+c^2ge ab+bc+ca$$
Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
$$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$
Then
$$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
$$=xyz(x+y+z)$$
answered Jun 9 '16 at 17:36


Roman83Roman83
14.4k31956
14.4k31956
$begingroup$
how did the x^2 change to xz?
$endgroup$
– Gigi Chuck
Jun 9 '16 at 17:41
1
$begingroup$
we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
$endgroup$
– Roman83
Jun 9 '16 at 17:43
add a comment |
$begingroup$
how did the x^2 change to xz?
$endgroup$
– Gigi Chuck
Jun 9 '16 at 17:41
1
$begingroup$
we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
$endgroup$
– Roman83
Jun 9 '16 at 17:43
$begingroup$
how did the x^2 change to xz?
$endgroup$
– Gigi Chuck
Jun 9 '16 at 17:41
$begingroup$
how did the x^2 change to xz?
$endgroup$
– Gigi Chuck
Jun 9 '16 at 17:41
1
1
$begingroup$
we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
$endgroup$
– Roman83
Jun 9 '16 at 17:43
$begingroup$
we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
$endgroup$
– Roman83
Jun 9 '16 at 17:43
add a comment |
$begingroup$
AM–GM is invoked in two steps as follows:
$begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$
$endgroup$
add a comment |
$begingroup$
AM–GM is invoked in two steps as follows:
$begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$
$endgroup$
add a comment |
$begingroup$
AM–GM is invoked in two steps as follows:
$begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$
$endgroup$
AM–GM is invoked in two steps as follows:
$begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$
answered Jun 9 '16 at 17:57


George LawGeorge Law
3,58711423
3,58711423
add a comment |
add a comment |
$begingroup$
The inequality is equivalent to ( by expanding RHS)
$$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
By AM-GM
$$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
$$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
$$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
Adding them up we get
$$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
$$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$
$endgroup$
add a comment |
$begingroup$
The inequality is equivalent to ( by expanding RHS)
$$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
By AM-GM
$$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
$$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
$$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
Adding them up we get
$$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
$$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$
$endgroup$
add a comment |
$begingroup$
The inequality is equivalent to ( by expanding RHS)
$$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
By AM-GM
$$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
$$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
$$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
Adding them up we get
$$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
$$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$
$endgroup$
The inequality is equivalent to ( by expanding RHS)
$$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
By AM-GM
$$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
$$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
$$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
Adding them up we get
$$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
$$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$
answered Jan 22 at 0:34


Ehit KarimEhit Karim
341
341
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1819975%2fusing-am-gm-inequality-to-prove%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown