Using AM-GM inequality to prove












1












$begingroup$


prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$



This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$



    This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$



      This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.










      share|cite|improve this question











      $endgroup$




      prove that $$x^4 + y^4 + z^4 geq xyz(x+y+z)$$



      This AM-GM inequalities are seriously stumping me. I'd appreciate a full proof and explanation and hints for proving other inequalities like this. Thanks.







      proof-explanation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jun 9 '16 at 17:36









      danimal

      1,8161612




      1,8161612










      asked Jun 9 '16 at 17:32









      Gigi ChuckGigi Chuck

      828




      828






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          Use: $$a^2+b^2+c^2ge ab+bc+ca$$
          Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
          $$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$



          Then
          $$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
          $$=xyz(x+y+z)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            how did the x^2 change to xz?
            $endgroup$
            – Gigi Chuck
            Jun 9 '16 at 17:41






          • 1




            $begingroup$
            we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
            $endgroup$
            – Roman83
            Jun 9 '16 at 17:43





















          1












          $begingroup$

          AM–GM is invoked in two steps as follows:



          $begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            The inequality is equivalent to ( by expanding RHS)
            $$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
            By AM-GM



            $$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
            $$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
            $$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
            Adding them up we get



            $$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
            $$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1819975%2fusing-am-gm-inequality-to-prove%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Use: $$a^2+b^2+c^2ge ab+bc+ca$$
              Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
              $$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$



              Then
              $$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
              $$=xyz(x+y+z)$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                how did the x^2 change to xz?
                $endgroup$
                – Gigi Chuck
                Jun 9 '16 at 17:41






              • 1




                $begingroup$
                we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
                $endgroup$
                – Roman83
                Jun 9 '16 at 17:43


















              3












              $begingroup$

              Use: $$a^2+b^2+c^2ge ab+bc+ca$$
              Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
              $$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$



              Then
              $$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
              $$=xyz(x+y+z)$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                how did the x^2 change to xz?
                $endgroup$
                – Gigi Chuck
                Jun 9 '16 at 17:41






              • 1




                $begingroup$
                we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
                $endgroup$
                – Roman83
                Jun 9 '16 at 17:43
















              3












              3








              3





              $begingroup$

              Use: $$a^2+b^2+c^2ge ab+bc+ca$$
              Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
              $$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$



              Then
              $$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
              $$=xyz(x+y+z)$$






              share|cite|improve this answer









              $endgroup$



              Use: $$a^2+b^2+c^2ge ab+bc+ca$$
              Proof:$$2(a^2+b^2+c^2)ge 2(ab+bc+ca) Leftrightarrow$$
              $$Leftrightarrow(a-b)^2+(b-c)^2+(c-a)^2ge0$$



              Then
              $$x^4+y^4+z^4ge x^2y^2+y^2z^2+z^2x^2ge xy^2z+x^2yz+xyz^2=$$
              $$=xyz(x+y+z)$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jun 9 '16 at 17:36









              Roman83Roman83

              14.4k31956




              14.4k31956












              • $begingroup$
                how did the x^2 change to xz?
                $endgroup$
                – Gigi Chuck
                Jun 9 '16 at 17:41






              • 1




                $begingroup$
                we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
                $endgroup$
                – Roman83
                Jun 9 '16 at 17:43




















              • $begingroup$
                how did the x^2 change to xz?
                $endgroup$
                – Gigi Chuck
                Jun 9 '16 at 17:41






              • 1




                $begingroup$
                we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
                $endgroup$
                – Roman83
                Jun 9 '16 at 17:43


















              $begingroup$
              how did the x^2 change to xz?
              $endgroup$
              – Gigi Chuck
              Jun 9 '16 at 17:41




              $begingroup$
              how did the x^2 change to xz?
              $endgroup$
              – Gigi Chuck
              Jun 9 '16 at 17:41




              1




              1




              $begingroup$
              we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
              $endgroup$
              – Roman83
              Jun 9 '16 at 17:43






              $begingroup$
              we use double $a^2+b^2+c^2ge ab+bc+ca$ Then $$x^2y^2+y^2z^2+z^2x^2 ge xy^2z+yz^2x+x^2yz$$
              $endgroup$
              – Roman83
              Jun 9 '16 at 17:43













              1












              $begingroup$

              AM–GM is invoked in two steps as follows:



              $begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                AM–GM is invoked in two steps as follows:



                $begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  AM–GM is invoked in two steps as follows:



                  $begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$






                  share|cite|improve this answer









                  $endgroup$



                  AM–GM is invoked in two steps as follows:



                  $begin{array}{rcl}x^4+y^4+z^4 &=& dfrac{x^4+y^4}2+dfrac{y^4+z^4}2+dfrac{z^4+x^4}2 \\ &ge& x^2y^2+y^2z^2+z^2x^2 \\ &=& dfrac{x^2y^2+y^2z^2}2+dfrac{y^2z^2+z^2x^2}2+dfrac{z^2x^2+x^2y^2}2 \\ &ge& xy^2z+yz^2x+zx^2y \\ &=& xyz(x+y+z)end{array}$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jun 9 '16 at 17:57









                  George LawGeorge Law

                  3,58711423




                  3,58711423























                      0












                      $begingroup$

                      The inequality is equivalent to ( by expanding RHS)
                      $$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
                      By AM-GM



                      $$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
                      $$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
                      $$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
                      Adding them up we get



                      $$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
                      $$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        The inequality is equivalent to ( by expanding RHS)
                        $$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
                        By AM-GM



                        $$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
                        $$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
                        $$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
                        Adding them up we get



                        $$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
                        $$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          The inequality is equivalent to ( by expanding RHS)
                          $$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
                          By AM-GM



                          $$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
                          $$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
                          $$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
                          Adding them up we get



                          $$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
                          $$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$






                          share|cite|improve this answer









                          $endgroup$



                          The inequality is equivalent to ( by expanding RHS)
                          $$ x^4 + y^4 +z^4 ge x^2yz + y^2xz + z^2xy$$
                          By AM-GM



                          $$ x^4+x^4 +y^4 +z^4 ge 4(x^8y^4z^4)^frac{1}{4} = 4x^2yz$$
                          $$ y^4+y^4 +x^4 +z^4 ge 4(y^8x^4z^4)^frac{1}{4} = 4y^2xz$$
                          $$ z^4+z^4 +x^4 +y^4 ge 4(z^8x^4y^4)^frac{1}{4} = 4z^2xy$$
                          Adding them up we get



                          $$4(x^4 +y^4 +z^4) ge 4(x^2yz+y^2xz + z^2xy)$$
                          $$ x^4 +y^4 +z^4 ge x^2yz+y^2xz + z^2xy $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 22 at 0:34









                          Ehit KarimEhit Karim

                          341




                          341






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1819975%2fusing-am-gm-inequality-to-prove%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith