What value of the constant $alpha$ makes $Y$ and $Z$ uncorrelated?












1












$begingroup$



The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?











share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?











    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$



      The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?











      share|cite|improve this question











      $endgroup$





      The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?








      probability






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 25 at 8:35







      Mark Jacon

















      asked Jan 24 at 12:07









      Mark JaconMark Jacon

      1127




      1127






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
            $endgroup$
            – Mark Jacon
            Jan 24 at 13:36






          • 1




            $begingroup$
            $EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 24 at 23:13












          • $begingroup$
            Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
            $endgroup$
            – Mark Jacon
            Jan 25 at 8:17






          • 1




            $begingroup$
            $EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
            $endgroup$
            – Kavi Rama Murthy
            Jan 25 at 8:19



















          0












          $begingroup$

          Solve:



          $E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$



          $Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.



          $E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$



          $E[Z]=alpha E[X_1]+E[X_2]=alpha+2$



          $Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$



          $E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$



          $E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$



          $Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085802%2fwhat-value-of-the-constant-alpha-makes-y-and-z-uncorrelated%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
              $endgroup$
              – Mark Jacon
              Jan 24 at 13:36






            • 1




              $begingroup$
              $EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
              $endgroup$
              – Kavi Rama Murthy
              Jan 24 at 23:13












            • $begingroup$
              Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
              $endgroup$
              – Mark Jacon
              Jan 25 at 8:17






            • 1




              $begingroup$
              $EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
              $endgroup$
              – Kavi Rama Murthy
              Jan 25 at 8:19
















            2












            $begingroup$

            It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
              $endgroup$
              – Mark Jacon
              Jan 24 at 13:36






            • 1




              $begingroup$
              $EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
              $endgroup$
              – Kavi Rama Murthy
              Jan 24 at 23:13












            • $begingroup$
              Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
              $endgroup$
              – Mark Jacon
              Jan 25 at 8:17






            • 1




              $begingroup$
              $EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
              $endgroup$
              – Kavi Rama Murthy
              Jan 25 at 8:19














            2












            2








            2





            $begingroup$

            It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?






            share|cite|improve this answer









            $endgroup$



            It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 24 at 12:18









            Kavi Rama MurthyKavi Rama Murthy

            67.6k53067




            67.6k53067












            • $begingroup$
              Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
              $endgroup$
              – Mark Jacon
              Jan 24 at 13:36






            • 1




              $begingroup$
              $EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
              $endgroup$
              – Kavi Rama Murthy
              Jan 24 at 23:13












            • $begingroup$
              Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
              $endgroup$
              – Mark Jacon
              Jan 25 at 8:17






            • 1




              $begingroup$
              $EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
              $endgroup$
              – Kavi Rama Murthy
              Jan 25 at 8:19


















            • $begingroup$
              Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
              $endgroup$
              – Mark Jacon
              Jan 24 at 13:36






            • 1




              $begingroup$
              $EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
              $endgroup$
              – Kavi Rama Murthy
              Jan 24 at 23:13












            • $begingroup$
              Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
              $endgroup$
              – Mark Jacon
              Jan 25 at 8:17






            • 1




              $begingroup$
              $EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
              $endgroup$
              – Kavi Rama Murthy
              Jan 25 at 8:19
















            $begingroup$
            Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
            $endgroup$
            – Mark Jacon
            Jan 24 at 13:36




            $begingroup$
            Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
            $endgroup$
            – Mark Jacon
            Jan 24 at 13:36




            1




            1




            $begingroup$
            $EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 24 at 23:13






            $begingroup$
            $EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 24 at 23:13














            $begingroup$
            Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
            $endgroup$
            – Mark Jacon
            Jan 25 at 8:17




            $begingroup$
            Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
            $endgroup$
            – Mark Jacon
            Jan 25 at 8:17




            1




            1




            $begingroup$
            $EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
            $endgroup$
            – Kavi Rama Murthy
            Jan 25 at 8:19




            $begingroup$
            $EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
            $endgroup$
            – Kavi Rama Murthy
            Jan 25 at 8:19











            0












            $begingroup$

            Solve:



            $E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$



            $Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.



            $E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$



            $E[Z]=alpha E[X_1]+E[X_2]=alpha+2$



            $Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$



            $E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$



            $E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$



            $Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Solve:



              $E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$



              $Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.



              $E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$



              $E[Z]=alpha E[X_1]+E[X_2]=alpha+2$



              $Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$



              $E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$



              $E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$



              $Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Solve:



                $E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$



                $Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.



                $E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$



                $E[Z]=alpha E[X_1]+E[X_2]=alpha+2$



                $Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$



                $E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$



                $E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$



                $Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$






                share|cite|improve this answer









                $endgroup$



                Solve:



                $E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$



                $Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.



                $E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$



                $E[Z]=alpha E[X_1]+E[X_2]=alpha+2$



                $Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$



                $E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$



                $E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$



                $Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 25 at 8:40









                Mark JaconMark Jacon

                1127




                1127






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085802%2fwhat-value-of-the-constant-alpha-makes-y-and-z-uncorrelated%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$