A self-adjoint operator without eigenvalues and with spectrum equal to {0}
$begingroup$
Let $A$ be a self-adjoint operator on a Hilbert space $H$. We know that the spectrum of $A$ ( $sigma(A)$) can be decomposed into an essential spectrum ($sigma_{ess}(A)$) and a set of eigenvalues ($sigma_e(A)$) : $sigma(A)=sigma_{ess}(A)cupsigma_e(A)$.
The question is: if we know that $sigma(A)=sigma_{ess}={0}$ can we prove that $A=0$?
spectral-theory self-adjoint-operators
$endgroup$
add a comment |
$begingroup$
Let $A$ be a self-adjoint operator on a Hilbert space $H$. We know that the spectrum of $A$ ( $sigma(A)$) can be decomposed into an essential spectrum ($sigma_{ess}(A)$) and a set of eigenvalues ($sigma_e(A)$) : $sigma(A)=sigma_{ess}(A)cupsigma_e(A)$.
The question is: if we know that $sigma(A)=sigma_{ess}={0}$ can we prove that $A=0$?
spectral-theory self-adjoint-operators
$endgroup$
add a comment |
$begingroup$
Let $A$ be a self-adjoint operator on a Hilbert space $H$. We know that the spectrum of $A$ ( $sigma(A)$) can be decomposed into an essential spectrum ($sigma_{ess}(A)$) and a set of eigenvalues ($sigma_e(A)$) : $sigma(A)=sigma_{ess}(A)cupsigma_e(A)$.
The question is: if we know that $sigma(A)=sigma_{ess}={0}$ can we prove that $A=0$?
spectral-theory self-adjoint-operators
$endgroup$
Let $A$ be a self-adjoint operator on a Hilbert space $H$. We know that the spectrum of $A$ ( $sigma(A)$) can be decomposed into an essential spectrum ($sigma_{ess}(A)$) and a set of eigenvalues ($sigma_e(A)$) : $sigma(A)=sigma_{ess}(A)cupsigma_e(A)$.
The question is: if we know that $sigma(A)=sigma_{ess}={0}$ can we prove that $A=0$?
spectral-theory self-adjoint-operators
spectral-theory self-adjoint-operators
asked Feb 1 at 10:53
MahranMahran
1235
1235
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $A: H to H$ is self-adjoint, then $A$ is bounded (Hellinger Toeplitz !).
If $r(A)= max{|lambda|: lambda in sigma(A)}$ denotes the spectral radius of $A$, then it is well-known that $r(A)=||A||$, if $A$ is self-adjoint.
Hence, if $sigma(A)={0}$, then $r(A)=0$, hence $A=0.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096081%2fa-self-adjoint-operator-without-eigenvalues-and-with-spectrum-equal-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $A: H to H$ is self-adjoint, then $A$ is bounded (Hellinger Toeplitz !).
If $r(A)= max{|lambda|: lambda in sigma(A)}$ denotes the spectral radius of $A$, then it is well-known that $r(A)=||A||$, if $A$ is self-adjoint.
Hence, if $sigma(A)={0}$, then $r(A)=0$, hence $A=0.$
$endgroup$
add a comment |
$begingroup$
If $A: H to H$ is self-adjoint, then $A$ is bounded (Hellinger Toeplitz !).
If $r(A)= max{|lambda|: lambda in sigma(A)}$ denotes the spectral radius of $A$, then it is well-known that $r(A)=||A||$, if $A$ is self-adjoint.
Hence, if $sigma(A)={0}$, then $r(A)=0$, hence $A=0.$
$endgroup$
add a comment |
$begingroup$
If $A: H to H$ is self-adjoint, then $A$ is bounded (Hellinger Toeplitz !).
If $r(A)= max{|lambda|: lambda in sigma(A)}$ denotes the spectral radius of $A$, then it is well-known that $r(A)=||A||$, if $A$ is self-adjoint.
Hence, if $sigma(A)={0}$, then $r(A)=0$, hence $A=0.$
$endgroup$
If $A: H to H$ is self-adjoint, then $A$ is bounded (Hellinger Toeplitz !).
If $r(A)= max{|lambda|: lambda in sigma(A)}$ denotes the spectral radius of $A$, then it is well-known that $r(A)=||A||$, if $A$ is self-adjoint.
Hence, if $sigma(A)={0}$, then $r(A)=0$, hence $A=0.$
answered Feb 1 at 10:57


FredFred
48.5k11849
48.5k11849
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096081%2fa-self-adjoint-operator-without-eigenvalues-and-with-spectrum-equal-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown