Try to find the ratio of two arcs












0












$begingroup$


O1 is the center of the big circle; O2 is the center of the small one.



Line(O2-P) is vertical to line(A-C).



Line(PQ):line(PB)=2:7



What's the ratio of arc(AC) and arc(CB)?



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: $AC:CB=AP:PO_2$
    $endgroup$
    – Vasya
    Feb 1 at 13:09
















0












$begingroup$


O1 is the center of the big circle; O2 is the center of the small one.



Line(O2-P) is vertical to line(A-C).



Line(PQ):line(PB)=2:7



What's the ratio of arc(AC) and arc(CB)?



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: $AC:CB=AP:PO_2$
    $endgroup$
    – Vasya
    Feb 1 at 13:09














0












0








0


2



$begingroup$


O1 is the center of the big circle; O2 is the center of the small one.



Line(O2-P) is vertical to line(A-C).



Line(PQ):line(PB)=2:7



What's the ratio of arc(AC) and arc(CB)?



enter image description here










share|cite|improve this question











$endgroup$




O1 is the center of the big circle; O2 is the center of the small one.



Line(O2-P) is vertical to line(A-C).



Line(PQ):line(PB)=2:7



What's the ratio of arc(AC) and arc(CB)?



enter image description here







triangles circles arc-length






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 1 at 13:16









Bernard

124k741117




124k741117










asked Feb 1 at 13:03









Andrew-at-TWAndrew-at-TW

1167




1167












  • $begingroup$
    Hint: $AC:CB=AP:PO_2$
    $endgroup$
    – Vasya
    Feb 1 at 13:09


















  • $begingroup$
    Hint: $AC:CB=AP:PO_2$
    $endgroup$
    – Vasya
    Feb 1 at 13:09
















$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09




$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09










1 Answer
1






active

oldest

votes


















2












$begingroup$

Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.



If $PH$ is an altitude of triangle $BPQ$, then:
$$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
and by similarity:
$$QH={4oversqrt{53}},
quad BH={49oversqrt{53}},
quad HO_2=QO_2-QH={45over 2sqrt{53}}.
$$

Triangle $APH$ is similar to $PHO_2$, hence:
$$
AH={392over45sqrt{53}},quad
AO_2=AH+HO_2={53sqrt{53}over90}
quadtext{and}quad
PA={14sqrt{53}over45}.
$$

Finally, $ABC$ is similar to $APO_2$ and
$displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
$$
BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
$$

It follows that:
$$
{ACover BC}={28over45},
quadtext{and}quad
{text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
$$






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096207%2ftry-to-find-the-ratio-of-two-arcs%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.



    If $PH$ is an altitude of triangle $BPQ$, then:
    $$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
    and by similarity:
    $$QH={4oversqrt{53}},
    quad BH={49oversqrt{53}},
    quad HO_2=QO_2-QH={45over 2sqrt{53}}.
    $$

    Triangle $APH$ is similar to $PHO_2$, hence:
    $$
    AH={392over45sqrt{53}},quad
    AO_2=AH+HO_2={53sqrt{53}over90}
    quadtext{and}quad
    PA={14sqrt{53}over45}.
    $$

    Finally, $ABC$ is similar to $APO_2$ and
    $displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
    $$
    BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
    $$

    It follows that:
    $$
    {ACover BC}={28over45},
    quadtext{and}quad
    {text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
    $$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.



      If $PH$ is an altitude of triangle $BPQ$, then:
      $$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
      and by similarity:
      $$QH={4oversqrt{53}},
      quad BH={49oversqrt{53}},
      quad HO_2=QO_2-QH={45over 2sqrt{53}}.
      $$

      Triangle $APH$ is similar to $PHO_2$, hence:
      $$
      AH={392over45sqrt{53}},quad
      AO_2=AH+HO_2={53sqrt{53}over90}
      quadtext{and}quad
      PA={14sqrt{53}over45}.
      $$

      Finally, $ABC$ is similar to $APO_2$ and
      $displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
      $$
      BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
      $$

      It follows that:
      $$
      {ACover BC}={28over45},
      quadtext{and}quad
      {text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
      $$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.



        If $PH$ is an altitude of triangle $BPQ$, then:
        $$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
        and by similarity:
        $$QH={4oversqrt{53}},
        quad BH={49oversqrt{53}},
        quad HO_2=QO_2-QH={45over 2sqrt{53}}.
        $$

        Triangle $APH$ is similar to $PHO_2$, hence:
        $$
        AH={392over45sqrt{53}},quad
        AO_2=AH+HO_2={53sqrt{53}over90}
        quadtext{and}quad
        PA={14sqrt{53}over45}.
        $$

        Finally, $ABC$ is similar to $APO_2$ and
        $displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
        $$
        BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
        $$

        It follows that:
        $$
        {ACover BC}={28over45},
        quadtext{and}quad
        {text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
        $$






        share|cite|improve this answer











        $endgroup$



        Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.



        If $PH$ is an altitude of triangle $BPQ$, then:
        $$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
        and by similarity:
        $$QH={4oversqrt{53}},
        quad BH={49oversqrt{53}},
        quad HO_2=QO_2-QH={45over 2sqrt{53}}.
        $$

        Triangle $APH$ is similar to $PHO_2$, hence:
        $$
        AH={392over45sqrt{53}},quad
        AO_2=AH+HO_2={53sqrt{53}over90}
        quadtext{and}quad
        PA={14sqrt{53}over45}.
        $$

        Finally, $ABC$ is similar to $APO_2$ and
        $displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
        $$
        BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
        $$

        It follows that:
        $$
        {ACover BC}={28over45},
        quadtext{and}quad
        {text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Feb 6 at 20:58

























        answered Feb 5 at 22:40









        AretinoAretino

        25.8k31545




        25.8k31545






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096207%2ftry-to-find-the-ratio-of-two-arcs%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]