Try to find the ratio of two arcs
$begingroup$
O1 is the center of the big circle; O2 is the center of the small one.
Line(O2-P) is vertical to line(A-C).
Line(PQ):line(PB)=2:7
What's the ratio of arc(AC) and arc(CB)?
triangles circles arc-length
$endgroup$
add a comment |
$begingroup$
O1 is the center of the big circle; O2 is the center of the small one.
Line(O2-P) is vertical to line(A-C).
Line(PQ):line(PB)=2:7
What's the ratio of arc(AC) and arc(CB)?
triangles circles arc-length
$endgroup$
$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09
add a comment |
$begingroup$
O1 is the center of the big circle; O2 is the center of the small one.
Line(O2-P) is vertical to line(A-C).
Line(PQ):line(PB)=2:7
What's the ratio of arc(AC) and arc(CB)?
triangles circles arc-length
$endgroup$
O1 is the center of the big circle; O2 is the center of the small one.
Line(O2-P) is vertical to line(A-C).
Line(PQ):line(PB)=2:7
What's the ratio of arc(AC) and arc(CB)?
triangles circles arc-length
triangles circles arc-length
edited Feb 1 at 13:16
Bernard
124k741117
124k741117
asked Feb 1 at 13:03
Andrew-at-TWAndrew-at-TW
1167
1167
$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09
add a comment |
$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09
$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09
$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.
If $PH$ is an altitude of triangle $BPQ$, then:
$$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
and by similarity:
$$QH={4oversqrt{53}},
quad BH={49oversqrt{53}},
quad HO_2=QO_2-QH={45over 2sqrt{53}}.
$$
Triangle $APH$ is similar to $PHO_2$, hence:
$$
AH={392over45sqrt{53}},quad
AO_2=AH+HO_2={53sqrt{53}over90}
quadtext{and}quad
PA={14sqrt{53}over45}.
$$
Finally, $ABC$ is similar to $APO_2$ and
$displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
$$
BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
$$
It follows that:
$$
{ACover BC}={28over45},
quadtext{and}quad
{text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096207%2ftry-to-find-the-ratio-of-two-arcs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.
If $PH$ is an altitude of triangle $BPQ$, then:
$$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
and by similarity:
$$QH={4oversqrt{53}},
quad BH={49oversqrt{53}},
quad HO_2=QO_2-QH={45over 2sqrt{53}}.
$$
Triangle $APH$ is similar to $PHO_2$, hence:
$$
AH={392over45sqrt{53}},quad
AO_2=AH+HO_2={53sqrt{53}over90}
quadtext{and}quad
PA={14sqrt{53}over45}.
$$
Finally, $ABC$ is similar to $APO_2$ and
$displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
$$
BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
$$
It follows that:
$$
{ACover BC}={28over45},
quadtext{and}quad
{text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
$$
$endgroup$
add a comment |
$begingroup$
Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.
If $PH$ is an altitude of triangle $BPQ$, then:
$$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
and by similarity:
$$QH={4oversqrt{53}},
quad BH={49oversqrt{53}},
quad HO_2=QO_2-QH={45over 2sqrt{53}}.
$$
Triangle $APH$ is similar to $PHO_2$, hence:
$$
AH={392over45sqrt{53}},quad
AO_2=AH+HO_2={53sqrt{53}over90}
quadtext{and}quad
PA={14sqrt{53}over45}.
$$
Finally, $ABC$ is similar to $APO_2$ and
$displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
$$
BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
$$
It follows that:
$$
{ACover BC}={28over45},
quadtext{and}quad
{text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
$$
$endgroup$
add a comment |
$begingroup$
Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.
If $PH$ is an altitude of triangle $BPQ$, then:
$$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
and by similarity:
$$QH={4oversqrt{53}},
quad BH={49oversqrt{53}},
quad HO_2=QO_2-QH={45over 2sqrt{53}}.
$$
Triangle $APH$ is similar to $PHO_2$, hence:
$$
AH={392over45sqrt{53}},quad
AO_2=AH+HO_2={53sqrt{53}over90}
quadtext{and}quad
PA={14sqrt{53}over45}.
$$
Finally, $ABC$ is similar to $APO_2$ and
$displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
$$
BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
$$
It follows that:
$$
{ACover BC}={28over45},
quadtext{and}quad
{text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
$$
$endgroup$
Let $PQ=2$ and $PB=7$: by Pythagoras' theorem we then get $BQ=sqrt{53}$.
If $PH$ is an altitude of triangle $BPQ$, then:
$$PH=PQcdot {PBover BQ}={14oversqrt{53}}$$
and by similarity:
$$QH={4oversqrt{53}},
quad BH={49oversqrt{53}},
quad HO_2=QO_2-QH={45over 2sqrt{53}}.
$$
Triangle $APH$ is similar to $PHO_2$, hence:
$$
AH={392over45sqrt{53}},quad
AO_2=AH+HO_2={53sqrt{53}over90}
quadtext{and}quad
PA={14sqrt{53}over45}.
$$
Finally, $ABC$ is similar to $APO_2$ and
$displaystyle AB=AO_2+BO_2={49sqrt{53}over45}$, whence:
$$
BC={49oversqrt{53}}, quad AC={1372over45sqrt{53}}.
$$
It follows that:
$$
{ACover BC}={28over45},
quadtext{and}quad
{text{arc}(AC)over text{arc}(BC)}={arctan(28/45)overarctan(45/28)}.
$$
edited Feb 6 at 20:58
answered Feb 5 at 22:40
AretinoAretino
25.8k31545
25.8k31545
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096207%2ftry-to-find-the-ratio-of-two-arcs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: $AC:CB=AP:PO_2$
$endgroup$
– Vasya
Feb 1 at 13:09