What is $inttan^2{x}dx$? what strategy can I use?
$begingroup$
I'm a bit stuck on how to find the inter
gral of
$$ int tan^2{x}dx$$
if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?
EDIT
I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?
calculus
$endgroup$
add a comment |
$begingroup$
I'm a bit stuck on how to find the inter
gral of
$$ int tan^2{x}dx$$
if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?
EDIT
I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?
calculus
$endgroup$
$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type$tan x$
to obtain $tan x$ and$sec x$
to obtain $sec x$.
$endgroup$
– N. F. Taussig
Feb 1 at 14:06
2
$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06
$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23
add a comment |
$begingroup$
I'm a bit stuck on how to find the inter
gral of
$$ int tan^2{x}dx$$
if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?
EDIT
I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?
calculus
$endgroup$
I'm a bit stuck on how to find the inter
gral of
$$ int tan^2{x}dx$$
if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?
EDIT
I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?
calculus
calculus
edited Feb 1 at 14:32
Bernard
124k741117
124k741117
asked Feb 1 at 14:02
Jwan622Jwan622
2,38711632
2,38711632
$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type$tan x$
to obtain $tan x$ and$sec x$
to obtain $sec x$.
$endgroup$
– N. F. Taussig
Feb 1 at 14:06
2
$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06
$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23
add a comment |
$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type$tan x$
to obtain $tan x$ and$sec x$
to obtain $sec x$.
$endgroup$
– N. F. Taussig
Feb 1 at 14:06
2
$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06
$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23
$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type
$tan x$
to obtain $tan x$ and $sec x$
to obtain $sec x$.$endgroup$
– N. F. Taussig
Feb 1 at 14:06
$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type
$tan x$
to obtain $tan x$ and $sec x$
to obtain $sec x$.$endgroup$
– N. F. Taussig
Feb 1 at 14:06
2
2
$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06
$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06
$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23
$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:
$$
begin{align}
int tan^2{x},dx
&=int (sec^2x-1),dx\
&=int sec^2x,dx-int,dx\
&=tan{x}-x+C.
end{align}
$$
If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.
$$
tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
$$
$$
tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
$$
$$
begin{align}
inttan^2{x},dx
&=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
&=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
&=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
&=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
end{align}
$$
And now you apply the Weierstrass substitution formulas:
$$
cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
$$
$$
begin{align}
=frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
end{align}
$$
At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.
PS: I hope I didn't make any mistake.
$endgroup$
$begingroup$
Is there a way to do this with a half angle identity for $ tan^2x$
$endgroup$
– Jwan622
Feb 1 at 14:27
$begingroup$
Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
$endgroup$
– Michael Rybkin
Feb 1 at 14:43
add a comment |
$begingroup$
Hint
use$$(tan x)'=1+tan^2x$$
$endgroup$
add a comment |
$begingroup$
Hint:
A useful but not so well known formula is
$$(tan x)'=tan^2x+1.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096259%2fwhat-is-int-tan2xdx-what-strategy-can-i-use%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:
$$
begin{align}
int tan^2{x},dx
&=int (sec^2x-1),dx\
&=int sec^2x,dx-int,dx\
&=tan{x}-x+C.
end{align}
$$
If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.
$$
tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
$$
$$
tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
$$
$$
begin{align}
inttan^2{x},dx
&=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
&=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
&=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
&=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
end{align}
$$
And now you apply the Weierstrass substitution formulas:
$$
cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
$$
$$
begin{align}
=frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
end{align}
$$
At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.
PS: I hope I didn't make any mistake.
$endgroup$
$begingroup$
Is there a way to do this with a half angle identity for $ tan^2x$
$endgroup$
– Jwan622
Feb 1 at 14:27
$begingroup$
Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
$endgroup$
– Michael Rybkin
Feb 1 at 14:43
add a comment |
$begingroup$
Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:
$$
begin{align}
int tan^2{x},dx
&=int (sec^2x-1),dx\
&=int sec^2x,dx-int,dx\
&=tan{x}-x+C.
end{align}
$$
If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.
$$
tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
$$
$$
tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
$$
$$
begin{align}
inttan^2{x},dx
&=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
&=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
&=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
&=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
end{align}
$$
And now you apply the Weierstrass substitution formulas:
$$
cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
$$
$$
begin{align}
=frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
end{align}
$$
At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.
PS: I hope I didn't make any mistake.
$endgroup$
$begingroup$
Is there a way to do this with a half angle identity for $ tan^2x$
$endgroup$
– Jwan622
Feb 1 at 14:27
$begingroup$
Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
$endgroup$
– Michael Rybkin
Feb 1 at 14:43
add a comment |
$begingroup$
Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:
$$
begin{align}
int tan^2{x},dx
&=int (sec^2x-1),dx\
&=int sec^2x,dx-int,dx\
&=tan{x}-x+C.
end{align}
$$
If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.
$$
tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
$$
$$
tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
$$
$$
begin{align}
inttan^2{x},dx
&=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
&=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
&=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
&=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
end{align}
$$
And now you apply the Weierstrass substitution formulas:
$$
cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
$$
$$
begin{align}
=frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
end{align}
$$
At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.
PS: I hope I didn't make any mistake.
$endgroup$
Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:
$$
begin{align}
int tan^2{x},dx
&=int (sec^2x-1),dx\
&=int sec^2x,dx-int,dx\
&=tan{x}-x+C.
end{align}
$$
If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.
$$
tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
$$
$$
tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
$$
$$
begin{align}
inttan^2{x},dx
&=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
&=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
&=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
&=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
end{align}
$$
And now you apply the Weierstrass substitution formulas:
$$
cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
$$
$$
begin{align}
=frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
end{align}
$$
At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.
PS: I hope I didn't make any mistake.
edited Feb 1 at 15:11
answered Feb 1 at 14:18
Michael RybkinMichael Rybkin
4,254422
4,254422
$begingroup$
Is there a way to do this with a half angle identity for $ tan^2x$
$endgroup$
– Jwan622
Feb 1 at 14:27
$begingroup$
Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
$endgroup$
– Michael Rybkin
Feb 1 at 14:43
add a comment |
$begingroup$
Is there a way to do this with a half angle identity for $ tan^2x$
$endgroup$
– Jwan622
Feb 1 at 14:27
$begingroup$
Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
$endgroup$
– Michael Rybkin
Feb 1 at 14:43
$begingroup$
Is there a way to do this with a half angle identity for $ tan^2x$
$endgroup$
– Jwan622
Feb 1 at 14:27
$begingroup$
Is there a way to do this with a half angle identity for $ tan^2x$
$endgroup$
– Jwan622
Feb 1 at 14:27
$begingroup$
Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
$endgroup$
– Michael Rybkin
Feb 1 at 14:43
$begingroup$
Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
$endgroup$
– Michael Rybkin
Feb 1 at 14:43
add a comment |
$begingroup$
Hint
use$$(tan x)'=1+tan^2x$$
$endgroup$
add a comment |
$begingroup$
Hint
use$$(tan x)'=1+tan^2x$$
$endgroup$
add a comment |
$begingroup$
Hint
use$$(tan x)'=1+tan^2x$$
$endgroup$
Hint
use$$(tan x)'=1+tan^2x$$
answered Feb 1 at 14:04
Mostafa AyazMostafa Ayaz
18.1k31040
18.1k31040
add a comment |
add a comment |
$begingroup$
Hint:
A useful but not so well known formula is
$$(tan x)'=tan^2x+1.$$
$endgroup$
add a comment |
$begingroup$
Hint:
A useful but not so well known formula is
$$(tan x)'=tan^2x+1.$$
$endgroup$
add a comment |
$begingroup$
Hint:
A useful but not so well known formula is
$$(tan x)'=tan^2x+1.$$
$endgroup$
Hint:
A useful but not so well known formula is
$$(tan x)'=tan^2x+1.$$
answered Feb 1 at 14:43
Yves DaoustYves Daoust
133k676231
133k676231
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096259%2fwhat-is-int-tan2xdx-what-strategy-can-i-use%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type
$tan x$
to obtain $tan x$ and$sec x$
to obtain $sec x$.$endgroup$
– N. F. Taussig
Feb 1 at 14:06
2
$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06
$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23