What is $inttan^2{x}dx$? what strategy can I use?












3












$begingroup$


I'm a bit stuck on how to find the inter
gral of



$$ int tan^2{x}dx$$



if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?



EDIT



I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Don't you mean $tan^2x = sec^2x - 1$? Type $tan x$ to obtain $tan x$ and $sec x$ to obtain $sec x$.
    $endgroup$
    – N. F. Taussig
    Feb 1 at 14:06






  • 2




    $begingroup$
    $sec^2(x)$ is the derivative of $tan(x)$.
    $endgroup$
    – Robert Z
    Feb 1 at 14:06










  • $begingroup$
    Using that formula seems harder than the original problem.
    $endgroup$
    – Randall
    Feb 1 at 14:23
















3












$begingroup$


I'm a bit stuck on how to find the inter
gral of



$$ int tan^2{x}dx$$



if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?



EDIT



I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Don't you mean $tan^2x = sec^2x - 1$? Type $tan x$ to obtain $tan x$ and $sec x$ to obtain $sec x$.
    $endgroup$
    – N. F. Taussig
    Feb 1 at 14:06






  • 2




    $begingroup$
    $sec^2(x)$ is the derivative of $tan(x)$.
    $endgroup$
    – Robert Z
    Feb 1 at 14:06










  • $begingroup$
    Using that formula seems harder than the original problem.
    $endgroup$
    – Randall
    Feb 1 at 14:23














3












3








3


0



$begingroup$


I'm a bit stuck on how to find the inter
gral of



$$ int tan^2{x}dx$$



if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?



EDIT



I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?










share|cite|improve this question











$endgroup$




I'm a bit stuck on how to find the inter
gral of



$$ int tan^2{x}dx$$



if I substitute, with $tan{x}$, there isn't a $sec^2{x}$ for me to substitute the dx out with. If I transform $tan^2{x}$ into $sec^2{x}-1$, then you subbing gets me nowhere again. Is there an identity I can use? If so, can someone show me the proof of it?



EDIT



I am told I can use this formula:
$$tan{frac{x}{2}} = sqrt{frac{1 - cos{x}}{1 + cos{x}}} $$
but I don't see how this helps me. Can someone show me the proof of how this was obtained via the double angle formula for sin and cosine?







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 1 at 14:32









Bernard

124k741117




124k741117










asked Feb 1 at 14:02









Jwan622Jwan622

2,38711632




2,38711632












  • $begingroup$
    Don't you mean $tan^2x = sec^2x - 1$? Type $tan x$ to obtain $tan x$ and $sec x$ to obtain $sec x$.
    $endgroup$
    – N. F. Taussig
    Feb 1 at 14:06






  • 2




    $begingroup$
    $sec^2(x)$ is the derivative of $tan(x)$.
    $endgroup$
    – Robert Z
    Feb 1 at 14:06










  • $begingroup$
    Using that formula seems harder than the original problem.
    $endgroup$
    – Randall
    Feb 1 at 14:23


















  • $begingroup$
    Don't you mean $tan^2x = sec^2x - 1$? Type $tan x$ to obtain $tan x$ and $sec x$ to obtain $sec x$.
    $endgroup$
    – N. F. Taussig
    Feb 1 at 14:06






  • 2




    $begingroup$
    $sec^2(x)$ is the derivative of $tan(x)$.
    $endgroup$
    – Robert Z
    Feb 1 at 14:06










  • $begingroup$
    Using that formula seems harder than the original problem.
    $endgroup$
    – Randall
    Feb 1 at 14:23
















$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type $tan x$ to obtain $tan x$ and $sec x$ to obtain $sec x$.
$endgroup$
– N. F. Taussig
Feb 1 at 14:06




$begingroup$
Don't you mean $tan^2x = sec^2x - 1$? Type $tan x$ to obtain $tan x$ and $sec x$ to obtain $sec x$.
$endgroup$
– N. F. Taussig
Feb 1 at 14:06




2




2




$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06




$begingroup$
$sec^2(x)$ is the derivative of $tan(x)$.
$endgroup$
– Robert Z
Feb 1 at 14:06












$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23




$begingroup$
Using that formula seems harder than the original problem.
$endgroup$
– Randall
Feb 1 at 14:23










3 Answers
3






active

oldest

votes


















10












$begingroup$

Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:



$$
begin{align}
int tan^2{x},dx
&=int (sec^2x-1),dx\
&=int sec^2x,dx-int,dx\
&=tan{x}-x+C.
end{align}
$$



If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.



$$
tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
$$



$$
tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
$$



$$
begin{align}
inttan^2{x},dx
&=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
&=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
&=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
&=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
end{align}
$$



And now you apply the Weierstrass substitution formulas:



$$
cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
$$



$$
begin{align}
=frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
end{align}
$$



At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.



PS: I hope I didn't make any mistake.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Is there a way to do this with a half angle identity for $ tan^2x$
    $endgroup$
    – Jwan622
    Feb 1 at 14:27










  • $begingroup$
    Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
    $endgroup$
    – Michael Rybkin
    Feb 1 at 14:43



















5












$begingroup$

Hint



use$$(tan x)'=1+tan^2x$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Hint:



    A useful but not so well known formula is



    $$(tan x)'=tan^2x+1.$$






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096259%2fwhat-is-int-tan2xdx-what-strategy-can-i-use%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      10












      $begingroup$

      Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:



      $$
      begin{align}
      int tan^2{x},dx
      &=int (sec^2x-1),dx\
      &=int sec^2x,dx-int,dx\
      &=tan{x}-x+C.
      end{align}
      $$



      If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.



      $$
      tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
      $$



      $$
      tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
      $$



      $$
      begin{align}
      inttan^2{x},dx
      &=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
      &=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
      &=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
      &=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
      end{align}
      $$



      And now you apply the Weierstrass substitution formulas:



      $$
      cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
      $$



      $$
      begin{align}
      =frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
      end{align}
      $$



      At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.



      PS: I hope I didn't make any mistake.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Is there a way to do this with a half angle identity for $ tan^2x$
        $endgroup$
        – Jwan622
        Feb 1 at 14:27










      • $begingroup$
        Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
        $endgroup$
        – Michael Rybkin
        Feb 1 at 14:43
















      10












      $begingroup$

      Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:



      $$
      begin{align}
      int tan^2{x},dx
      &=int (sec^2x-1),dx\
      &=int sec^2x,dx-int,dx\
      &=tan{x}-x+C.
      end{align}
      $$



      If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.



      $$
      tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
      $$



      $$
      tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
      $$



      $$
      begin{align}
      inttan^2{x},dx
      &=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
      &=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
      &=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
      &=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
      end{align}
      $$



      And now you apply the Weierstrass substitution formulas:



      $$
      cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
      $$



      $$
      begin{align}
      =frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
      end{align}
      $$



      At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.



      PS: I hope I didn't make any mistake.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Is there a way to do this with a half angle identity for $ tan^2x$
        $endgroup$
        – Jwan622
        Feb 1 at 14:27










      • $begingroup$
        Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
        $endgroup$
        – Michael Rybkin
        Feb 1 at 14:43














      10












      10








      10





      $begingroup$

      Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:



      $$
      begin{align}
      int tan^2{x},dx
      &=int (sec^2x-1),dx\
      &=int sec^2x,dx-int,dx\
      &=tan{x}-x+C.
      end{align}
      $$



      If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.



      $$
      tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
      $$



      $$
      tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
      $$



      $$
      begin{align}
      inttan^2{x},dx
      &=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
      &=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
      &=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
      &=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
      end{align}
      $$



      And now you apply the Weierstrass substitution formulas:



      $$
      cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
      $$



      $$
      begin{align}
      =frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
      end{align}
      $$



      At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.



      PS: I hope I didn't make any mistake.






      share|cite|improve this answer











      $endgroup$



      Don't forget that $tan^2{x}=sec^2-1$ and that $int sec^2x,dx=tan{x}+C$ because $frac{d}{dx}left(tan{x}right)=sec^2{x}$:



      $$
      begin{align}
      int tan^2{x},dx
      &=int (sec^2x-1),dx\
      &=int sec^2x,dx-int,dx\
      &=tan{x}-x+C.
      end{align}
      $$



      If you want to do this integral using the half-angle formula for the tangent function, you're gong to have to use the so-called Weierstrass substitution.



      $$
      tan^2{frac{x}{2}}=frac{sin^2{frac{x}{2}}}{cos^2{frac{x}{2}}}=frac{frac{1-cos{x}}{2}}{frac{1+cos{x}}{2}}=frac{1-cos{x}}{1+cos{x}}.
      $$



      $$
      tan^2{frac{(2x)}{2}}=tan^2{x}=frac{1-cos{(2x)}}{1+cos{(2x)}}.
      $$



      $$
      begin{align}
      inttan^2{x},dx
      &=int frac{1-cos{(2x)}}{1+cos{(2x)}}\
      &=intfrac{1}{1+cos{(2x)}},dx-intfrac{cos{(2x)}}{1+cos{(2x)}},dx\
      &=frac{1}{2}intfrac{1}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx-frac{1}{2}intfrac{cos{(2x)}}{1+cos{(2x)}}frac{d}{dx}left(2xright),dx (u=2x)\
      &=frac{1}{2}intfrac{1}{1+cos{u}},du-frac{1}{2}intfrac{cos{u}}{1+cos{u}},du\
      end{align}
      $$



      And now you apply the Weierstrass substitution formulas:



      $$
      cos{u}=frac{1-t^2}{1+t^2}, du=frac{2}{1+t^2}dt
      $$



      $$
      begin{align}
      =frac{1}{2}intfrac{1}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt-frac{1}{2}intfrac{frac{1-t^2}{1+t^2}}{1+frac{1-t^2}{1+t^2}}frac{2}{1+t^2},dt
      end{align}
      $$



      At this point, what you've got are purely algebraic expressions under the integral signs. All you need to do is simplify them, take their integrals and do back-substitution.



      PS: I hope I didn't make any mistake.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Feb 1 at 15:11

























      answered Feb 1 at 14:18









      Michael RybkinMichael Rybkin

      4,254422




      4,254422












      • $begingroup$
        Is there a way to do this with a half angle identity for $ tan^2x$
        $endgroup$
        – Jwan622
        Feb 1 at 14:27










      • $begingroup$
        Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
        $endgroup$
        – Michael Rybkin
        Feb 1 at 14:43


















      • $begingroup$
        Is there a way to do this with a half angle identity for $ tan^2x$
        $endgroup$
        – Jwan622
        Feb 1 at 14:27










      • $begingroup$
        Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
        $endgroup$
        – Michael Rybkin
        Feb 1 at 14:43
















      $begingroup$
      Is there a way to do this with a half angle identity for $ tan^2x$
      $endgroup$
      – Jwan622
      Feb 1 at 14:27




      $begingroup$
      Is there a way to do this with a half angle identity for $ tan^2x$
      $endgroup$
      – Jwan622
      Feb 1 at 14:27












      $begingroup$
      Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
      $endgroup$
      – Michael Rybkin
      Feb 1 at 14:43




      $begingroup$
      Probably, there is, but it's not going to be an integral that's easy to integrate because you would end up with something like this: $$intfrac{1}{1+cos{2x}},dx-intfrac{cos{2x}}{1+cos{2x}},dx.$$ I think this one could be done using the Weierstrass substitution.
      $endgroup$
      – Michael Rybkin
      Feb 1 at 14:43











      5












      $begingroup$

      Hint



      use$$(tan x)'=1+tan^2x$$






      share|cite|improve this answer









      $endgroup$


















        5












        $begingroup$

        Hint



        use$$(tan x)'=1+tan^2x$$






        share|cite|improve this answer









        $endgroup$
















          5












          5








          5





          $begingroup$

          Hint



          use$$(tan x)'=1+tan^2x$$






          share|cite|improve this answer









          $endgroup$



          Hint



          use$$(tan x)'=1+tan^2x$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Feb 1 at 14:04









          Mostafa AyazMostafa Ayaz

          18.1k31040




          18.1k31040























              2












              $begingroup$

              Hint:



              A useful but not so well known formula is



              $$(tan x)'=tan^2x+1.$$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Hint:



                A useful but not so well known formula is



                $$(tan x)'=tan^2x+1.$$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Hint:



                  A useful but not so well known formula is



                  $$(tan x)'=tan^2x+1.$$






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  A useful but not so well known formula is



                  $$(tan x)'=tan^2x+1.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 1 at 14:43









                  Yves DaoustYves Daoust

                  133k676231




                  133k676231






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096259%2fwhat-is-int-tan2xdx-what-strategy-can-i-use%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      SQL update select statement

                      'app-layout' is not a known element: how to share Component with different Modules