If $(a_n)_nsubseteq Bbb{R}$ and $leftlangle T,varphi rightrangle=sum^{infty}_{n=0}a_nvarphi(n)$, then $Tin...
$begingroup$
Let $(a_n)_nsubseteq Bbb{R}$ such that $$leftlangle T,varphi rightrangle=sum^{infty}_{n=0}a_nvarphi(n).$$
I want to prove that $Tin D'(Bbb{R}).$
My trial
It suffices to prove that $Tin l^1_{loc}(Bbb{R})$. That is,
$$ sum^{infty}_{n=0}left|a_nvarphi(n)right|<infty.$$
Let $varphiin D(Bbb{R})$, then there exists $a>0$ such that $text{supp}varphisubseteq [-a,a]$, where supp is the support of $varphi$.
$$left|leftlangle T,varphi rightrangleright|leq sum^{infty}_{n=0}left|a_nright| left|varphi(n)right|leq sup_{nin [-a,a]} left|varphi(n)right|sum^{infty}_{n=0}left|a_nright|.$$
Since $(a_n)_nsubseteq Bbb{R}$, I am not sure that $sum^{infty}_{n=0}left|a_nright|<infty.$ So, I am stuck here, as I don't know how to proceed. Any help, please?
functional-analysis distribution-theory
$endgroup$
add a comment |
$begingroup$
Let $(a_n)_nsubseteq Bbb{R}$ such that $$leftlangle T,varphi rightrangle=sum^{infty}_{n=0}a_nvarphi(n).$$
I want to prove that $Tin D'(Bbb{R}).$
My trial
It suffices to prove that $Tin l^1_{loc}(Bbb{R})$. That is,
$$ sum^{infty}_{n=0}left|a_nvarphi(n)right|<infty.$$
Let $varphiin D(Bbb{R})$, then there exists $a>0$ such that $text{supp}varphisubseteq [-a,a]$, where supp is the support of $varphi$.
$$left|leftlangle T,varphi rightrangleright|leq sum^{infty}_{n=0}left|a_nright| left|varphi(n)right|leq sup_{nin [-a,a]} left|varphi(n)right|sum^{infty}_{n=0}left|a_nright|.$$
Since $(a_n)_nsubseteq Bbb{R}$, I am not sure that $sum^{infty}_{n=0}left|a_nright|<infty.$ So, I am stuck here, as I don't know how to proceed. Any help, please?
functional-analysis distribution-theory
$endgroup$
$begingroup$
The only $a_n$ that matter are the ones for $nleq a$
$endgroup$
– Max
Feb 1 at 14:06
$begingroup$
@Max: The ones such that $nleq a$? How?
$endgroup$
– Micheal
Feb 1 at 14:08
1
$begingroup$
$displaystyle|sum_{n=0}^infty a_nvarphi(n)| = |sum_{nleq a} a_nvarphi(n) + 0| leq ||varphi||_K displaystylesum_{nleq a } |a_n|$
$endgroup$
– Max
Feb 1 at 14:09
$begingroup$
@Max: You made a point.
$endgroup$
– Micheal
Feb 1 at 14:13
add a comment |
$begingroup$
Let $(a_n)_nsubseteq Bbb{R}$ such that $$leftlangle T,varphi rightrangle=sum^{infty}_{n=0}a_nvarphi(n).$$
I want to prove that $Tin D'(Bbb{R}).$
My trial
It suffices to prove that $Tin l^1_{loc}(Bbb{R})$. That is,
$$ sum^{infty}_{n=0}left|a_nvarphi(n)right|<infty.$$
Let $varphiin D(Bbb{R})$, then there exists $a>0$ such that $text{supp}varphisubseteq [-a,a]$, where supp is the support of $varphi$.
$$left|leftlangle T,varphi rightrangleright|leq sum^{infty}_{n=0}left|a_nright| left|varphi(n)right|leq sup_{nin [-a,a]} left|varphi(n)right|sum^{infty}_{n=0}left|a_nright|.$$
Since $(a_n)_nsubseteq Bbb{R}$, I am not sure that $sum^{infty}_{n=0}left|a_nright|<infty.$ So, I am stuck here, as I don't know how to proceed. Any help, please?
functional-analysis distribution-theory
$endgroup$
Let $(a_n)_nsubseteq Bbb{R}$ such that $$leftlangle T,varphi rightrangle=sum^{infty}_{n=0}a_nvarphi(n).$$
I want to prove that $Tin D'(Bbb{R}).$
My trial
It suffices to prove that $Tin l^1_{loc}(Bbb{R})$. That is,
$$ sum^{infty}_{n=0}left|a_nvarphi(n)right|<infty.$$
Let $varphiin D(Bbb{R})$, then there exists $a>0$ such that $text{supp}varphisubseteq [-a,a]$, where supp is the support of $varphi$.
$$left|leftlangle T,varphi rightrangleright|leq sum^{infty}_{n=0}left|a_nright| left|varphi(n)right|leq sup_{nin [-a,a]} left|varphi(n)right|sum^{infty}_{n=0}left|a_nright|.$$
Since $(a_n)_nsubseteq Bbb{R}$, I am not sure that $sum^{infty}_{n=0}left|a_nright|<infty.$ So, I am stuck here, as I don't know how to proceed. Any help, please?
functional-analysis distribution-theory
functional-analysis distribution-theory
edited Feb 1 at 14:00
Micheal
asked Feb 1 at 13:48
MichealMicheal
26511
26511
$begingroup$
The only $a_n$ that matter are the ones for $nleq a$
$endgroup$
– Max
Feb 1 at 14:06
$begingroup$
@Max: The ones such that $nleq a$? How?
$endgroup$
– Micheal
Feb 1 at 14:08
1
$begingroup$
$displaystyle|sum_{n=0}^infty a_nvarphi(n)| = |sum_{nleq a} a_nvarphi(n) + 0| leq ||varphi||_K displaystylesum_{nleq a } |a_n|$
$endgroup$
– Max
Feb 1 at 14:09
$begingroup$
@Max: You made a point.
$endgroup$
– Micheal
Feb 1 at 14:13
add a comment |
$begingroup$
The only $a_n$ that matter are the ones for $nleq a$
$endgroup$
– Max
Feb 1 at 14:06
$begingroup$
@Max: The ones such that $nleq a$? How?
$endgroup$
– Micheal
Feb 1 at 14:08
1
$begingroup$
$displaystyle|sum_{n=0}^infty a_nvarphi(n)| = |sum_{nleq a} a_nvarphi(n) + 0| leq ||varphi||_K displaystylesum_{nleq a } |a_n|$
$endgroup$
– Max
Feb 1 at 14:09
$begingroup$
@Max: You made a point.
$endgroup$
– Micheal
Feb 1 at 14:13
$begingroup$
The only $a_n$ that matter are the ones for $nleq a$
$endgroup$
– Max
Feb 1 at 14:06
$begingroup$
The only $a_n$ that matter are the ones for $nleq a$
$endgroup$
– Max
Feb 1 at 14:06
$begingroup$
@Max: The ones such that $nleq a$? How?
$endgroup$
– Micheal
Feb 1 at 14:08
$begingroup$
@Max: The ones such that $nleq a$? How?
$endgroup$
– Micheal
Feb 1 at 14:08
1
1
$begingroup$
$displaystyle|sum_{n=0}^infty a_nvarphi(n)| = |sum_{nleq a} a_nvarphi(n) + 0| leq ||varphi||_K displaystylesum_{nleq a } |a_n|$
$endgroup$
– Max
Feb 1 at 14:09
$begingroup$
$displaystyle|sum_{n=0}^infty a_nvarphi(n)| = |sum_{nleq a} a_nvarphi(n) + 0| leq ||varphi||_K displaystylesum_{nleq a } |a_n|$
$endgroup$
– Max
Feb 1 at 14:09
$begingroup$
@Max: You made a point.
$endgroup$
– Micheal
Feb 1 at 14:13
$begingroup$
@Max: You made a point.
$endgroup$
– Micheal
Feb 1 at 14:13
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096246%2fif-a-n-n-subseteq-bbbr-and-left-langle-t-varphi-right-rangle-sum-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096246%2fif-a-n-n-subseteq-bbbr-and-left-langle-t-varphi-right-rangle-sum-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The only $a_n$ that matter are the ones for $nleq a$
$endgroup$
– Max
Feb 1 at 14:06
$begingroup$
@Max: The ones such that $nleq a$? How?
$endgroup$
– Micheal
Feb 1 at 14:08
1
$begingroup$
$displaystyle|sum_{n=0}^infty a_nvarphi(n)| = |sum_{nleq a} a_nvarphi(n) + 0| leq ||varphi||_K displaystylesum_{nleq a } |a_n|$
$endgroup$
– Max
Feb 1 at 14:09
$begingroup$
@Max: You made a point.
$endgroup$
– Micheal
Feb 1 at 14:13