Elementary inequality proof $2|tx|leq |x^2|+|t^2|$












1












$begingroup$


I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
$$2|tx|leq |t^2|+|x^2|$$



I have for $t=a+bi$:
$$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
and
$$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
reaching
$$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$



How do I continue?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
    $$2|tx|leq |t^2|+|x^2|$$



    I have for $t=a+bi$:
    $$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
    and
    $$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
    reaching
    $$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$



    How do I continue?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
      $$2|tx|leq |t^2|+|x^2|$$



      I have for $t=a+bi$:
      $$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
      and
      $$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
      reaching
      $$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$



      How do I continue?










      share|cite|improve this question











      $endgroup$




      I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
      $$2|tx|leq |t^2|+|x^2|$$



      I have for $t=a+bi$:
      $$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
      and
      $$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
      reaching
      $$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$



      How do I continue?







      algebra-precalculus inequality complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 30 at 15:57









      José Carlos Santos

      172k22132239




      172k22132239










      asked Jan 30 at 15:21









      orangeorange

      687316




      687316






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          $$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
            $endgroup$
            – orange
            Jan 30 at 18:54










          • $begingroup$
            Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 18:55



















          1












          $begingroup$

          Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why is that correct
            $endgroup$
            – orange
            Jan 30 at 15:27












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093659%2felementary-inequality-proof-2tx-leq-x2t2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          $$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
            $endgroup$
            – orange
            Jan 30 at 18:54










          • $begingroup$
            Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 18:55
















          3












          $begingroup$

          $$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
            $endgroup$
            – orange
            Jan 30 at 18:54










          • $begingroup$
            Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 18:55














          3












          3








          3





          $begingroup$

          $$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$






          share|cite|improve this answer









          $endgroup$



          $$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 30 at 15:27









          José Carlos SantosJosé Carlos Santos

          172k22132239




          172k22132239












          • $begingroup$
            I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
            $endgroup$
            – orange
            Jan 30 at 18:54










          • $begingroup$
            Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 18:55


















          • $begingroup$
            I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
            $endgroup$
            – orange
            Jan 30 at 18:54










          • $begingroup$
            Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 18:55
















          $begingroup$
          I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
          $endgroup$
          – orange
          Jan 30 at 18:54




          $begingroup$
          I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
          $endgroup$
          – orange
          Jan 30 at 18:54












          $begingroup$
          Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
          $endgroup$
          – José Carlos Santos
          Jan 30 at 18:55




          $begingroup$
          Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
          $endgroup$
          – José Carlos Santos
          Jan 30 at 18:55











          1












          $begingroup$

          Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why is that correct
            $endgroup$
            – orange
            Jan 30 at 15:27
















          1












          $begingroup$

          Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why is that correct
            $endgroup$
            – orange
            Jan 30 at 15:27














          1












          1








          1





          $begingroup$

          Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$






          share|cite|improve this answer











          $endgroup$



          Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 30 at 15:28

























          answered Jan 30 at 15:26









          Dr. Sonnhard GraubnerDr. Sonnhard Graubner

          78.4k42867




          78.4k42867












          • $begingroup$
            Why is that correct
            $endgroup$
            – orange
            Jan 30 at 15:27


















          • $begingroup$
            Why is that correct
            $endgroup$
            – orange
            Jan 30 at 15:27
















          $begingroup$
          Why is that correct
          $endgroup$
          – orange
          Jan 30 at 15:27




          $begingroup$
          Why is that correct
          $endgroup$
          – orange
          Jan 30 at 15:27


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093659%2felementary-inequality-proof-2tx-leq-x2t2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith