Elementary inequality proof $2|tx|leq |x^2|+|t^2|$
$begingroup$
I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
$$2|tx|leq |t^2|+|x^2|$$
I have for $t=a+bi$:
$$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
and
$$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
reaching
$$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$
How do I continue?
algebra-precalculus inequality complex-numbers
$endgroup$
add a comment |
$begingroup$
I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
$$2|tx|leq |t^2|+|x^2|$$
I have for $t=a+bi$:
$$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
and
$$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
reaching
$$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$
How do I continue?
algebra-precalculus inequality complex-numbers
$endgroup$
add a comment |
$begingroup$
I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
$$2|tx|leq |t^2|+|x^2|$$
I have for $t=a+bi$:
$$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
and
$$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
reaching
$$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$
How do I continue?
algebra-precalculus inequality complex-numbers
$endgroup$
I am trying to prove the following inequality for $xin mathbb{R}$ und $tin mathbb{C}$:
$$2|tx|leq |t^2|+|x^2|$$
I have for $t=a+bi$:
$$|t^2|=|a^2-b^2+aib|=sqrt{left(a^2+b^2right)^2}$$
and
$$2|tx|=2sqrt{x^2}sqrt{a^2+b^2}$$
reaching
$$2sqrt{x^2}sqrt{a^2+b^2}leqsqrt{left(a^2+b^2right)^2}+x^2 $$
How do I continue?
algebra-precalculus inequality complex-numbers
algebra-precalculus inequality complex-numbers
edited Jan 30 at 15:57


José Carlos Santos
172k22132239
172k22132239
asked Jan 30 at 15:21


orangeorange
687316
687316
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$
$endgroup$
$begingroup$
I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
$endgroup$
– orange
Jan 30 at 18:54
$begingroup$
Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
$endgroup$
– José Carlos Santos
Jan 30 at 18:55
add a comment |
$begingroup$
Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$
$endgroup$
$begingroup$
Why is that correct
$endgroup$
– orange
Jan 30 at 15:27
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093659%2felementary-inequality-proof-2tx-leq-x2t2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$
$endgroup$
$begingroup$
I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
$endgroup$
– orange
Jan 30 at 18:54
$begingroup$
Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
$endgroup$
– José Carlos Santos
Jan 30 at 18:55
add a comment |
$begingroup$
$$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$
$endgroup$
$begingroup$
I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
$endgroup$
– orange
Jan 30 at 18:54
$begingroup$
Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
$endgroup$
– José Carlos Santos
Jan 30 at 18:55
add a comment |
$begingroup$
$$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$
$endgroup$
$$lvert xrvert^2+lvert trvert^2-2lvert xtrvert=lvert xrvert^2+lvert trvert^2-2lvert xrvertlvert trvert=bigl(lvert xrvert-lvert trvertbigr)^2geqslant0.$$
answered Jan 30 at 15:27


José Carlos SantosJosé Carlos Santos
172k22132239
172k22132239
$begingroup$
I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
$endgroup$
– orange
Jan 30 at 18:54
$begingroup$
Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
$endgroup$
– José Carlos Santos
Jan 30 at 18:55
add a comment |
$begingroup$
I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
$endgroup$
– orange
Jan 30 at 18:54
$begingroup$
Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
$endgroup$
– José Carlos Santos
Jan 30 at 18:55
$begingroup$
I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
$endgroup$
– orange
Jan 30 at 18:54
$begingroup$
I want $|t^2|$ not norm squared. The norm isn't muktiolivative for complex numbers right?
$endgroup$
– orange
Jan 30 at 18:54
$begingroup$
Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
$endgroup$
– José Carlos Santos
Jan 30 at 18:55
$begingroup$
Yes, it is: $(forall z,winmathbb{C}):lvert zwrvert=lvert zrvertlvert wrvert$.
$endgroup$
– José Carlos Santos
Jan 30 at 18:55
add a comment |
$begingroup$
Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$
$endgroup$
$begingroup$
Why is that correct
$endgroup$
– orange
Jan 30 at 15:27
add a comment |
$begingroup$
Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$
$endgroup$
$begingroup$
Why is that correct
$endgroup$
– orange
Jan 30 at 15:27
add a comment |
$begingroup$
Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$
$endgroup$
Hint: Write $$0le |x|^2+|t|^2-2|tx|$$ it is $$0le (|x|-|t|)^2$$
edited Jan 30 at 15:28
answered Jan 30 at 15:26


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.4k42867
78.4k42867
$begingroup$
Why is that correct
$endgroup$
– orange
Jan 30 at 15:27
add a comment |
$begingroup$
Why is that correct
$endgroup$
– orange
Jan 30 at 15:27
$begingroup$
Why is that correct
$endgroup$
– orange
Jan 30 at 15:27
$begingroup$
Why is that correct
$endgroup$
– orange
Jan 30 at 15:27
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093659%2felementary-inequality-proof-2tx-leq-x2t2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown