Gradient of time dependent function
$begingroup$
Let $uin L^2(bar{Omega})$ be a differentiable function which is also time-dependent, where $Omegasubset mathbb{R}^d$. Is there any connection between $(nabla u_t,nabla u)$ and $(nabla u,nabla u)$. My final problem is to show the positivity of $(nabla u_t,nabla u)$.
I worked with a simple example of $d=1$ and taking $u(x,t)=x^2t$. Here, I get it as $(nabla u_t,nabla u)=t(nabla u,nabla u)$ with $Omega=(0,1)$. Can we say it in general this holds? I mean can I say $(nabla u_t,nabla u)geq0$
calculus multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $uin L^2(bar{Omega})$ be a differentiable function which is also time-dependent, where $Omegasubset mathbb{R}^d$. Is there any connection between $(nabla u_t,nabla u)$ and $(nabla u,nabla u)$. My final problem is to show the positivity of $(nabla u_t,nabla u)$.
I worked with a simple example of $d=1$ and taking $u(x,t)=x^2t$. Here, I get it as $(nabla u_t,nabla u)=t(nabla u,nabla u)$ with $Omega=(0,1)$. Can we say it in general this holds? I mean can I say $(nabla u_t,nabla u)geq0$
calculus multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Let $uin L^2(bar{Omega})$ be a differentiable function which is also time-dependent, where $Omegasubset mathbb{R}^d$. Is there any connection between $(nabla u_t,nabla u)$ and $(nabla u,nabla u)$. My final problem is to show the positivity of $(nabla u_t,nabla u)$.
I worked with a simple example of $d=1$ and taking $u(x,t)=x^2t$. Here, I get it as $(nabla u_t,nabla u)=t(nabla u,nabla u)$ with $Omega=(0,1)$. Can we say it in general this holds? I mean can I say $(nabla u_t,nabla u)geq0$
calculus multivariable-calculus
$endgroup$
Let $uin L^2(bar{Omega})$ be a differentiable function which is also time-dependent, where $Omegasubset mathbb{R}^d$. Is there any connection between $(nabla u_t,nabla u)$ and $(nabla u,nabla u)$. My final problem is to show the positivity of $(nabla u_t,nabla u)$.
I worked with a simple example of $d=1$ and taking $u(x,t)=x^2t$. Here, I get it as $(nabla u_t,nabla u)=t(nabla u,nabla u)$ with $Omega=(0,1)$. Can we say it in general this holds? I mean can I say $(nabla u_t,nabla u)geq0$
calculus multivariable-calculus
calculus multivariable-calculus
asked Jan 30 at 11:19
Abhinav JhaAbhinav Jha
2741211
2741211
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No. Take $u(x,t)=e^{-t}x^2$ instead of $u(x,t)=x^2t$ in your example. Then
$$
(nabla u_t,nabla u)=-(nabla u,nabla u).
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093408%2fgradient-of-time-dependent-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No. Take $u(x,t)=e^{-t}x^2$ instead of $u(x,t)=x^2t$ in your example. Then
$$
(nabla u_t,nabla u)=-(nabla u,nabla u).
$$
$endgroup$
add a comment |
$begingroup$
No. Take $u(x,t)=e^{-t}x^2$ instead of $u(x,t)=x^2t$ in your example. Then
$$
(nabla u_t,nabla u)=-(nabla u,nabla u).
$$
$endgroup$
add a comment |
$begingroup$
No. Take $u(x,t)=e^{-t}x^2$ instead of $u(x,t)=x^2t$ in your example. Then
$$
(nabla u_t,nabla u)=-(nabla u,nabla u).
$$
$endgroup$
No. Take $u(x,t)=e^{-t}x^2$ instead of $u(x,t)=x^2t$ in your example. Then
$$
(nabla u_t,nabla u)=-(nabla u,nabla u).
$$
answered Jan 30 at 12:21
jobejobe
1,109615
1,109615
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093408%2fgradient-of-time-dependent-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown