How to draw Micrometer scale using TikZ












29















How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.










share|improve this question




















  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    Feb 1 at 13:59






  • 2





    Title is amended

    – KJO
    Feb 1 at 15:22






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    Feb 1 at 21:19











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    Feb 2 at 23:47











  • @Dithermaster OK Micrometer scale it is

    – KJO
    Feb 3 at 2:08
















29















How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.










share|improve this question




















  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    Feb 1 at 13:59






  • 2





    Title is amended

    – KJO
    Feb 1 at 15:22






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    Feb 1 at 21:19











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    Feb 2 at 23:47











  • @Dithermaster OK Micrometer scale it is

    – KJO
    Feb 3 at 2:08














29












29








29


6






How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.










share|improve this question
















How to draw these two figures in TikZ?



enter image description here



I have gone as far as



documentclass[margin=3mm,tikz]{standalone}
begin{document}
begin{tikzpicture}
draw (0,0)--(-2,0);
draw (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)--(1.5,1)--(3.5,1);
draw (0,-2)--(1.5,-3)--(3.5,-3);
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
end{tikzpicture}
end{document}


enter image description here



but I got stuck when I tried to insert the numbers and the small lines. They should have accurate slopes, and,



enter image description here



the red line and the blue line should not meet the green line at the same point.



These criterias are too difficult and complicated for me to overpass.



Can you help me? Any help is very appreciated.







tikz-pgf






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Feb 3 at 2:05









KJO

3,6701222




3,6701222










asked Feb 1 at 13:32









SomeoneSomeone

14613




14613








  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    Feb 1 at 13:59






  • 2





    Title is amended

    – KJO
    Feb 1 at 15:22






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    Feb 1 at 21:19











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    Feb 2 at 23:47











  • @Dithermaster OK Micrometer scale it is

    – KJO
    Feb 3 at 2:08














  • 2





    Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

    – dexteritas
    Feb 1 at 13:59






  • 2





    Title is amended

    – KJO
    Feb 1 at 15:22






  • 1





    @JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

    – KJO
    Feb 1 at 21:19











  • I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

    – Dithermaster
    Feb 2 at 23:47











  • @Dithermaster OK Micrometer scale it is

    – KJO
    Feb 3 at 2:08








2




2





Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

– dexteritas
Feb 1 at 13:59





Welcome to TeX.SX! It's good that you provided a minimal working example (MWE), but your title could be more descriptive.

– dexteritas
Feb 1 at 13:59




2




2





Title is amended

– KJO
Feb 1 at 15:22





Title is amended

– KJO
Feb 1 at 15:22




1




1





@JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

– KJO
Feb 1 at 21:19





@JerryCoffin I know, but it was more eye catching on the tongue than simply how to draw "this" and sleeve and thimble was too wieldy but I can change it if you think its best to aim for finer precision :-)

– KJO
Feb 1 at 21:19













I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

– Dithermaster
Feb 2 at 23:47





I agree with @JerryCoffin. An accurate title would be "micrometer". For an example of a Vernier micrometer, see: en.wikipedia.org/wiki/Vernier_scale

– Dithermaster
Feb 2 at 23:47













@Dithermaster OK Micrometer scale it is

– KJO
Feb 3 at 2:08





@Dithermaster OK Micrometer scale it is

– KJO
Feb 3 at 2:08










4 Answers
4






active

oldest

votes


















30














This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,calc}

begin{document}

tdplotsetmaincoords{00}{00}
foreach Z in {1.5,3,...,30,28.5,27,...,3}
{tdplotsetrotatedcoords{0}{Z}{00}
pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
% begin{scope}[xshift=-5cm]
% draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
% draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
% draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
% end{scope}
path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
path[tdplot_screen_coords] (5,3) node[anchor=north east]
{$mathsf{L}=VernierLength$};
begin{scope}
begin{scope}[canvas is yz plane at x=0]
path (0,0) coordinate (M1);
draw (180:1) arc(180:0:1);
end{scope}
begin{scope}[canvas is yz plane at x=1.5]
path (0,0) coordinate (M2);
draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
(BR) arc(180+n1/2:-n1/2:2);
end{scope}
begin{scope}
draw plot[variable=t,domain=0:360,smooth]
(-VernierLength/10-0.5,{cos(t)},{sin(t)});
draw[clip] plot[variable=t,domain=0:180,smooth]
(-VernierLength/10-0.5,{cos(t)},{sin(t)})
-- plot[variable=t,domain=180:0,smooth]
(0,{cos(t)},{sin(t)}) -- cycle;
draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
plot[variable=t,domain=60:110,smooth]
(-VernierLength/10,{cos(t)},{sin(t)});
path let
p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
node[rotate=n1,yscale={cos(30)},transform shape]{0};
pgfmathtruncatemacro{Xmax}{VernierLength/2}
ifnumXmax>0
foreach X in {1,...,Xmax}
{ifoddX
draw plot[variable=t,domain=90:110,smooth]
(-VernierLength/10+X/5,{cos(t)},{sin(t)});
% path let
% p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
% n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
% node[rotate=n1,yscale={cos(30)},transform shape]{X};
else
draw plot[variable=t,domain=90:70,smooth]
(-VernierLength/10+X/5,{cos(t)},{sin(t)});
% path let
% p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
% n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
% node[rotate=n1,yscale={cos(30)},transform shape]{X};
fi
}
fi
end{scope}
%
begin{scope}[canvas is yz plane at x=3.5]
path (0,0) coordinate (M3);
draw (180:2) arc(180:0:2);
draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
end{scope}
pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
pgfmathtruncatemacro{Xmax}{Xmin+23}
foreach X [evaluate=X as Y using {int(mod(X,5))},
evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
{ifnumY=0
draw[thin] let
p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
(0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
(0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
p3=($(0.6,{0},{(1+0.4)})-
(0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
(0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
-- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
else
draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
-- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
fi}
end{scope}
end{tikzpicture}}
end{document}


enter image description here



And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



documentclass[tikz,border=3.14mm]{standalone}
usetikzlibrary{calc}
begin{document}
begin{tikzpicture}[font=sffamily]
draw (0,0)--(-2,0) (0,-2)--(-2,-2);
draw[thin] (0,0)--(0,-2);
draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
draw[thin] (1.5,1)--(1.5,-3);
draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
coordinate (P);
clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
{ifnumY=0
draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
else
draw[shorten >=-7pt] (P) -- (0,-2+X/9);
fi }
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 1





    @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

    – Raaja
    Feb 1 at 17:06






  • 1





    Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

    – KJO
    Feb 1 at 17:42






  • 4





    @marmot Naaice!

    – Raaja
    Feb 1 at 19:36






  • 1





    @KJO I think Ulrike Fischer will be in charge of the weather ;-)

    – marmot
    Feb 1 at 19:57






  • 1





    @KJO Yes, getting old.

    – marmot
    Feb 3 at 0:23



















27














Adaptions:




  • I set the orign to the "0" of the horizontal scale.


Description:




  • added 3 parameters:



    • lenx is the horizontal length


    • xscale is the scaling of one horizontal length unit


    • startrange is the starting number of the vertical scale



  • for loops and modulo calculations are used for drawing the scales


Code:



documentclass[margin=3mm,tikz]{standalone}

begin{document}

newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
newcommand{xscale}{.2}
newcommand{startrange}{0} % e.g.: 0 or 7

begin{tikzpicture}
% scale right
foreach i in {1, ..., 18} {
pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
ifnumpgfmathresult>0
% long line with number
draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
else
% short line
draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
fi
}

% horizontal scale (left)
draw[red] (0,0) -- (lenx*xscale,0);
draw[thick] (0,.3) -- (0,-.15) node[below]{0};
pgfmathparse{int(lenx)}
foreach i in {0, ..., pgfmathresult} {
pgfmathparse{Mod(i,2)==0?1:0}
ifnumpgfmathresult>0
draw (i*xscale,0) -- (i*xscale,.15);
else
draw (i*xscale,0) -- (i*xscale,-.15);
fi
}

% borders
draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
draw (-.5,1)--(lenx*xscale,1);
draw (-.5,-1)--(lenx*xscale,-1);

draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

% curvy lines (left and right)
draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
end{tikzpicture}
end{document}


Results:



enter image description here






share|improve this answer































    16














    A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



    documentclass[pstricks,border=12pt,12pt]{standalone}
    usepackage{multido}
    usepackage[nomessages]{fp}

    makeatletter
    defvernier#1{%
    begingroup
    psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
    pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
    multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
    pst@modin{50}lbl
    pst@modlbl{5}tmp
    psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
    ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
    }
    psline(.5pslinewidth,-5)(.5pslinewidth,5)
    endgroup
    }

    newcommandmicrometer[1]{%
    bgroup
    psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
    begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
    FPevalargs{trunc(#1*100:0)}
    pst@mod{args}{100}position
    FPevallbl{trunc(args/100:0)}
    multido{ix=0+50}{4}{%
    pst@modix{100}rem
    ifnumrem=0
    psline(ix,-17pt)(ix,17pt)
    uput[90](ix,16pt){lbl}
    FPevallbl{trunc(lbl+1:0)}
    else
    pst@modix{50}rem
    ifnumrem=0
    psline(ix,-5pt)(ix,5pt)
    fi
    fi}
    psline(150,0)
    rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
    rput(75,1.75){scriptsize#1}
    end{pspicture}
    egroup
    }
    makeatother

    begin{document}
    multido{n=3.00+0.01}{100}{micrometer{n}}
    %micrometer{2.34}
    end{document}


    enter image description here






    share|improve this answer



















    • 3





      +1. However, I think the OP only asks how to draw the figures :)

      – JouleV
      Feb 1 at 14:57






    • 3





      @JouleV: I was not trying to answer the OP question. :-)

      – Artificial Hairless Armpit
      Feb 1 at 14:58






    • 8





      ... as usual ;-).

      – AlexG
      Feb 1 at 18:32











    • @ArtificialStupidity Flags as NAA.

      – EKons
      Feb 3 at 11:35






    • 1





      @EKons: Flags as ANA.

      – Artificial Hairless Armpit
      Feb 3 at 12:33



















    3














    Foreword: This answer is only a tiny improvement of @dexteritas' answer so that the output figure fits the given figure more accurately.1 Don't accept this answer.





    I make a little change in the startrange definition and the y-coordinate of points in the horizontal scale.



    Diagram 1:



    documentclass[margin=3mm,tikz]{standalone}

    begin{document}

    newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
    newcommand{xscale}{.2}
    newcommand{startrange}{1} % e.g.: 0 or 7

    begin{tikzpicture}
    % scale right
    foreach i in {1, ..., 18} {
    pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
    ifnumpgfmathresult>0
    % long line with number
    draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
    else
    % short line
    draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
    fi
    }

    % horizontal scale (left)
    draw (0,-.04) -- (lenx*xscale,-.04);
    draw[thick] (0,.26) -- (0,-.19) node[below]{0};
    pgfmathparse{int(lenx)}
    foreach i in {0, ..., pgfmathresult} {
    pgfmathparse{Mod(i,2)==0?1:0}
    ifnumpgfmathresult>0
    draw (i*xscale,-.04) -- (i*xscale,.11);
    else
    draw (i*xscale,-.04) -- (i*xscale,-.19);
    fi
    }

    % borders
    draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
    draw (-.5,1)--(lenx*xscale,1);
    draw (-.5,-1)--(lenx*xscale,-1);

    draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
    draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
    draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

    % curvy lines (left and right)
    draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
    draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
    draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
    draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
    end{tikzpicture}
    end{document}


    enter image description here



    Diagram 2:



    documentclass[margin=3mm,tikz]{standalone}

    begin{document}

    newcommand{lenx}{0.4} % e.g.: 0.4 or 5.3
    newcommand{xscale}{.2}
    newcommand{startrange}{6} % e.g.: 0 or 7

    begin{tikzpicture}
    % scale right
    foreach i in {1, ..., 18} {
    pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
    ifnumpgfmathresult>0
    % long line with number
    draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
    else
    % short line
    draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
    fi
    }

    % horizontal scale (left)
    draw (0,-.04) -- (lenx*xscale,-.04);
    draw[thick] (0,.26) -- (0,-.19) node[below]{0};
    pgfmathparse{int(lenx)}
    foreach i in {0, ..., pgfmathresult} {
    pgfmathparse{Mod(i,2)==0?1:0}
    ifnumpgfmathresult>0
    draw (i*xscale,-.04) -- (i*xscale,.11);
    else
    draw (i*xscale,-.04) -- (i*xscale,-.19);
    fi
    }

    % borders
    draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
    draw (-.5,1)--(lenx*xscale,1);
    draw (-.5,-1)--(lenx*xscale,-1);

    draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
    draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
    draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

    % curvy lines (left and right)
    draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
    draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
    draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
    draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
    end{tikzpicture}
    end{document}


    enter image description here





    1 Micrometer is, of course, a tool for very accurate measurement, so I think the accuracy of the figure makes sense in this case.






    share|improve this answer
























    • You changed startrange from 0 to 1 in first diagram, so the range goes from 1 to 18, but in the question it goes from 0 to 17 just as in my answer. For the second diagram I chose another range as in the quesiton, just to show the dynamic of the vertical scale. Your second adaption is to move the horizontal axis away from the vertical center? So to match the figure of the question one could move the y-coordinates by +0.08, but I thought it would be more "accurate" to assume the horizontal scale should be centered. For such a tiny change a comment would certainly have been sufficient.

      – dexteritas
      Feb 9 at 19:45












    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "85"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f472876%2fhow-to-draw-micrometer-scale-using-tikz%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    30














    This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{3d,calc}

    begin{document}

    tdplotsetmaincoords{00}{00}
    foreach Z in {1.5,3,...,30,28.5,27,...,3}
    {tdplotsetrotatedcoords{0}{Z}{00}
    pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
    begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
    % begin{scope}[xshift=-5cm]
    % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
    % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
    % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
    % end{scope}
    path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
    path[tdplot_screen_coords] (5,3) node[anchor=north east]
    {$mathsf{L}=VernierLength$};
    begin{scope}
    begin{scope}[canvas is yz plane at x=0]
    path (0,0) coordinate (M1);
    draw (180:1) arc(180:0:1);
    end{scope}
    begin{scope}[canvas is yz plane at x=1.5]
    path (0,0) coordinate (M2);
    draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
    ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
    ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
    (BR) arc(180+n1/2:-n1/2:2);
    end{scope}
    begin{scope}
    draw plot[variable=t,domain=0:360,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)});
    draw[clip] plot[variable=t,domain=0:180,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)})
    -- plot[variable=t,domain=180:0,smooth]
    (0,{cos(t)},{sin(t)}) -- cycle;
    draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
    plot[variable=t,domain=60:110,smooth]
    (-VernierLength/10,{cos(t)},{sin(t)});
    path let
    p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
    n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
    node[rotate=n1,yscale={cos(30)},transform shape]{0};
    pgfmathtruncatemacro{Xmax}{VernierLength/2}
    ifnumXmax>0
    foreach X in {1,...,Xmax}
    {ifoddX
    draw plot[variable=t,domain=90:110,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
    % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    else
    draw plot[variable=t,domain=90:70,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
    % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    fi
    }
    fi
    end{scope}
    %
    begin{scope}[canvas is yz plane at x=3.5]
    path (0,0) coordinate (M3);
    draw (180:2) arc(180:0:2);
    draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
    ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
    end{scope}
    pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
    pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
    pgfmathtruncatemacro{Xmax}{Xmin+23}
    foreach X [evaluate=X as Y using {int(mod(X,5))},
    evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
    {ifnumY=0
    draw[thin] let
    p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
    p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
    p3=($(0.6,{0},{(1+0.4)})-
    (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
    n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
    node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
    else
    draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
    fi}
    end{scope}
    end{tikzpicture}}
    end{document}


    enter image description here



    And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



    documentclass[tikz,border=3.14mm]{standalone}
    usetikzlibrary{calc}
    begin{document}
    begin{tikzpicture}[font=sffamily]
    draw (0,0)--(-2,0) (0,-2)--(-2,-2);
    draw[thin] (0,0)--(0,-2);
    draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
    draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
    draw[thin] (1.5,1)--(1.5,-3);
    draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
    draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
    draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
    draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
    path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
    coordinate (P);
    clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
    foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
    {ifnumY=0
    draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
    else
    draw[shorten >=-7pt] (P) -- (0,-2+X/9);
    fi }
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer





















    • 1





      @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

      – Raaja
      Feb 1 at 17:06






    • 1





      Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

      – KJO
      Feb 1 at 17:42






    • 4





      @marmot Naaice!

      – Raaja
      Feb 1 at 19:36






    • 1





      @KJO I think Ulrike Fischer will be in charge of the weather ;-)

      – marmot
      Feb 1 at 19:57






    • 1





      @KJO Yes, getting old.

      – marmot
      Feb 3 at 0:23
















    30














    This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{3d,calc}

    begin{document}

    tdplotsetmaincoords{00}{00}
    foreach Z in {1.5,3,...,30,28.5,27,...,3}
    {tdplotsetrotatedcoords{0}{Z}{00}
    pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
    begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
    % begin{scope}[xshift=-5cm]
    % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
    % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
    % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
    % end{scope}
    path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
    path[tdplot_screen_coords] (5,3) node[anchor=north east]
    {$mathsf{L}=VernierLength$};
    begin{scope}
    begin{scope}[canvas is yz plane at x=0]
    path (0,0) coordinate (M1);
    draw (180:1) arc(180:0:1);
    end{scope}
    begin{scope}[canvas is yz plane at x=1.5]
    path (0,0) coordinate (M2);
    draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
    ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
    ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
    (BR) arc(180+n1/2:-n1/2:2);
    end{scope}
    begin{scope}
    draw plot[variable=t,domain=0:360,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)});
    draw[clip] plot[variable=t,domain=0:180,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)})
    -- plot[variable=t,domain=180:0,smooth]
    (0,{cos(t)},{sin(t)}) -- cycle;
    draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
    plot[variable=t,domain=60:110,smooth]
    (-VernierLength/10,{cos(t)},{sin(t)});
    path let
    p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
    n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
    node[rotate=n1,yscale={cos(30)},transform shape]{0};
    pgfmathtruncatemacro{Xmax}{VernierLength/2}
    ifnumXmax>0
    foreach X in {1,...,Xmax}
    {ifoddX
    draw plot[variable=t,domain=90:110,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
    % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    else
    draw plot[variable=t,domain=90:70,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
    % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    fi
    }
    fi
    end{scope}
    %
    begin{scope}[canvas is yz plane at x=3.5]
    path (0,0) coordinate (M3);
    draw (180:2) arc(180:0:2);
    draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
    ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
    end{scope}
    pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
    pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
    pgfmathtruncatemacro{Xmax}{Xmin+23}
    foreach X [evaluate=X as Y using {int(mod(X,5))},
    evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
    {ifnumY=0
    draw[thin] let
    p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
    p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
    p3=($(0.6,{0},{(1+0.4)})-
    (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
    n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
    node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
    else
    draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
    fi}
    end{scope}
    end{tikzpicture}}
    end{document}


    enter image description here



    And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



    documentclass[tikz,border=3.14mm]{standalone}
    usetikzlibrary{calc}
    begin{document}
    begin{tikzpicture}[font=sffamily]
    draw (0,0)--(-2,0) (0,-2)--(-2,-2);
    draw[thin] (0,0)--(0,-2);
    draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
    draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
    draw[thin] (1.5,1)--(1.5,-3);
    draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
    draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
    draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
    draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
    path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
    coordinate (P);
    clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
    foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
    {ifnumY=0
    draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
    else
    draw[shorten >=-7pt] (P) -- (0,-2+X/9);
    fi }
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer





















    • 1





      @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

      – Raaja
      Feb 1 at 17:06






    • 1





      Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

      – KJO
      Feb 1 at 17:42






    • 4





      @marmot Naaice!

      – Raaja
      Feb 1 at 19:36






    • 1





      @KJO I think Ulrike Fischer will be in charge of the weather ;-)

      – marmot
      Feb 1 at 19:57






    • 1





      @KJO Yes, getting old.

      – marmot
      Feb 3 at 0:23














    30












    30








    30







    This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{3d,calc}

    begin{document}

    tdplotsetmaincoords{00}{00}
    foreach Z in {1.5,3,...,30,28.5,27,...,3}
    {tdplotsetrotatedcoords{0}{Z}{00}
    pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
    begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
    % begin{scope}[xshift=-5cm]
    % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
    % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
    % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
    % end{scope}
    path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
    path[tdplot_screen_coords] (5,3) node[anchor=north east]
    {$mathsf{L}=VernierLength$};
    begin{scope}
    begin{scope}[canvas is yz plane at x=0]
    path (0,0) coordinate (M1);
    draw (180:1) arc(180:0:1);
    end{scope}
    begin{scope}[canvas is yz plane at x=1.5]
    path (0,0) coordinate (M2);
    draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
    ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
    ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
    (BR) arc(180+n1/2:-n1/2:2);
    end{scope}
    begin{scope}
    draw plot[variable=t,domain=0:360,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)});
    draw[clip] plot[variable=t,domain=0:180,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)})
    -- plot[variable=t,domain=180:0,smooth]
    (0,{cos(t)},{sin(t)}) -- cycle;
    draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
    plot[variable=t,domain=60:110,smooth]
    (-VernierLength/10,{cos(t)},{sin(t)});
    path let
    p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
    n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
    node[rotate=n1,yscale={cos(30)},transform shape]{0};
    pgfmathtruncatemacro{Xmax}{VernierLength/2}
    ifnumXmax>0
    foreach X in {1,...,Xmax}
    {ifoddX
    draw plot[variable=t,domain=90:110,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
    % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    else
    draw plot[variable=t,domain=90:70,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
    % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    fi
    }
    fi
    end{scope}
    %
    begin{scope}[canvas is yz plane at x=3.5]
    path (0,0) coordinate (M3);
    draw (180:2) arc(180:0:2);
    draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
    ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
    end{scope}
    pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
    pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
    pgfmathtruncatemacro{Xmax}{Xmin+23}
    foreach X [evaluate=X as Y using {int(mod(X,5))},
    evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
    {ifnumY=0
    draw[thin] let
    p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
    p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
    p3=($(0.6,{0},{(1+0.4)})-
    (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
    n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
    node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
    else
    draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
    fi}
    end{scope}
    end{tikzpicture}}
    end{document}


    enter image description here



    And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



    documentclass[tikz,border=3.14mm]{standalone}
    usetikzlibrary{calc}
    begin{document}
    begin{tikzpicture}[font=sffamily]
    draw (0,0)--(-2,0) (0,-2)--(-2,-2);
    draw[thin] (0,0)--(0,-2);
    draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
    draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
    draw[thin] (1.5,1)--(1.5,-3);
    draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
    draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
    draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
    draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
    path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
    coordinate (P);
    clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
    foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
    {ifnumY=0
    draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
    else
    draw[shorten >=-7pt] (P) -- (0,-2+X/9);
    fi }
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer















    This is an attempt of a 3d answer. I acknowledge and appreciate comments by KJO that made me realize that this is not really realistic and by Raaja that made me choose a perhaps more intuitive offset. ;-)



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{3d,calc}

    begin{document}

    tdplotsetmaincoords{00}{00}
    foreach Z in {1.5,3,...,30,28.5,27,...,3}
    {tdplotsetrotatedcoords{0}{Z}{00}
    pgfmathsetmacro{VernierLength}{Z/2} % <- this is the length in mm you want to show
    begin{tikzpicture}[tdplot_rotated_coords,font=sffamily]
    % begin{scope}[xshift=-5cm]
    % draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]{$x$};
    % draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]{$y$};
    % draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]{$z$};
    % end{scope}
    path[tdplot_screen_coords,use as bounding box] (-3,-3) rectangle (5,3);
    path[tdplot_screen_coords] (5,3) node[anchor=north east]
    {$mathsf{L}=VernierLength$};
    begin{scope}
    begin{scope}[canvas is yz plane at x=0]
    path (0,0) coordinate (M1);
    draw (180:1) arc(180:0:1);
    end{scope}
    begin{scope}[canvas is yz plane at x=1.5]
    path (0,0) coordinate (M2);
    draw let p1=($(M2)-(M1)$),n1={0*atan2(y1,x1)+atan2(1,1.5)/2.5} in
    ($(M1)+(-n1/2:1)$) coordinate (TL) -- ($(M2)+(-n1/2:2)$) coordinate (TR)
    ($(M1)+(180+n1/2:1)$) coordinate (BL) -- ($(M2)+(180+n1/2:2)$) coordinate (BR)
    (BR) arc(180+n1/2:-n1/2:2);
    end{scope}
    begin{scope}
    draw plot[variable=t,domain=0:360,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)});
    draw[clip] plot[variable=t,domain=0:180,smooth]
    (-VernierLength/10-0.5,{cos(t)},{sin(t)})
    -- plot[variable=t,domain=180:0,smooth]
    (0,{cos(t)},{sin(t)}) -- cycle;
    draw[thick] (-VernierLength/10,0,1) -- (0,0,1)
    plot[variable=t,domain=60:110,smooth]
    (-VernierLength/10,{cos(t)},{sin(t)});
    path let
    p1=($(-VernierLength/10,{cos(120)},{sin(120)})-(-VernierLength/10,{cos(110)},{sin(110)})$),
    n1={90+atan2(y1,x1)} in (-VernierLength/10,{cos(120)},{sin(120)})
    node[rotate=n1,yscale={cos(30)},transform shape]{0};
    pgfmathtruncatemacro{Xmax}{VernierLength/2}
    ifnumXmax>0
    foreach X in {1,...,Xmax}
    {ifoddX
    draw plot[variable=t,domain=90:110,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(120)},{sin(120)})-(-VernierLength/10+X/5,{cos(110)},{sin(110)})$),
    % n1={90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(120)},{sin(120)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    else
    draw plot[variable=t,domain=90:70,smooth]
    (-VernierLength/10+X/5,{cos(t)},{sin(t)});
    % path let
    % p1=($(-VernierLength/10+X/5,{cos(60)},{sin(60)})-(-VernierLength/10+X/5,{cos(70)},{sin(70)})$),
    % n1={-90+atan2(y1,x1)} in (-VernierLength/10+X/5,{cos(60)},{sin(60)})
    % node[rotate=n1,yscale={cos(30)},transform shape]{X};
    fi
    }
    fi
    end{scope}
    %
    begin{scope}[canvas is yz plane at x=3.5]
    path (0,0) coordinate (M3);
    draw (180:2) arc(180:0:2);
    draw ($(M2)+(0:2)$) -- ($(M3)+(0:2)$)
    ($(M2)+(180:2)$) -- ($(M3)+(180:2)$);
    end{scope}
    pgfmathtruncatemacro{Offset}{180+10*VernierLength*7.2-12.5*7.2}
    pgfmathtruncatemacro{Xmin}{10*VernierLength+1-12.5}
    pgfmathtruncatemacro{Xmax}{Xmin+23}
    foreach X [evaluate=X as Y using {int(mod(X,5))},
    evaluate=X as LX using {int(mod(X,50))}] in {Xmin,...,Xmax}
    {ifnumY=0
    draw[thin] let
    p1=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})$),
    p2=($(0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})-
    (0.6,{(1+0.4)*cos(Offset-X*7.2+1)},{(1+0.4)*sin(Offset-X*7.2+1)})$),
    p3=($(0.6,{0},{(1+0.4)})-
    (0.6,{(1+0.4)*cos(91)},{(1+0.4)*sin(91)})$),
    n1={atan2(y1,x1)},n2={veclen(x2,y2)/veclen(x3,y3)} in
    (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.6,{(1+0.4)*cos(Offset-X*7.2)},{(1+0.4)*sin(Offset-X*7.2)})
    node[pos=1.5,rotate=n1,yscale={n2},transform shape]{LX};
    else
    draw[thin] (0,{cos(Offset-X*7.2)},{sin(Offset-X*7.2)})
    -- (0.3,{(1+0.2)*cos(Offset-X*7.2)},{(1+0.2)*sin(Offset-X*7.2)});
    fi}
    end{scope}
    end{tikzpicture}}
    end{document}


    enter image description here



    And here is a trick to draw the ticks. Call the point where the diagonal points intersect P. Then the ticks point to this point. Of course, in the end you want to remove the excess lines by clipping.



    documentclass[tikz,border=3.14mm]{standalone}
    usetikzlibrary{calc}
    begin{document}
    begin{tikzpicture}[font=sffamily]
    draw (0,0)--(-2,0) (0,-2)--(-2,-2);
    draw[thin] (0,0)--(0,-2);
    draw (0,0)coordinate (TL) --(1.5,1) coordinate (TR) --(3.5,1) ;
    draw (0,-2) coordinate (BL)--(1.5,-3) coordinate (BR) --(3.5,-3) ;
    draw[thin] (1.5,1)--(1.5,-3);
    draw (-2,-2) to[out=130,in=-130] (-2,-1) to[out=130,in=-130] (-2,0);
    draw[very thin] (-2,-1) to[out=50,in=-50] (-2,0);
    draw (3.5,1) to[out=-50,in=50] (3.5,-1) to[out=-50,in=50] (3.5,-3);
    draw[very thin] (3.5,-1) to[out=-130,in=130] (3.5,-3);
    path (intersection cs:first line={(TL)--(TR)}, second line={(BL)--(BR)})
    coordinate (P);
    clip (TL) -- (TR) -- (BR) -- (BL) -- cycle;
    foreach X [evaluate=X as Y using {int(mod(X,5))}] in {1,...,17}
    {ifnumY=0
    draw[shorten >=-20pt] (P) -- (0,-2+X/9) node[pos=1.65]{X};
    else
    draw[shorten >=-7pt] (P) -- (0,-2+X/9);
    fi }
    end{tikzpicture}
    end{document}


    enter image description here







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Feb 2 at 22:30

























    answered Feb 1 at 16:13









    marmotmarmot

    117k5150283




    117k5150283








    • 1





      @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

      – Raaja
      Feb 1 at 17:06






    • 1





      Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

      – KJO
      Feb 1 at 17:42






    • 4





      @marmot Naaice!

      – Raaja
      Feb 1 at 19:36






    • 1





      @KJO I think Ulrike Fischer will be in charge of the weather ;-)

      – marmot
      Feb 1 at 19:57






    • 1





      @KJO Yes, getting old.

      – marmot
      Feb 3 at 0:23














    • 1





      @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

      – Raaja
      Feb 1 at 17:06






    • 1





      Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

      – KJO
      Feb 1 at 17:42






    • 4





      @marmot Naaice!

      – Raaja
      Feb 1 at 19:36






    • 1





      @KJO I think Ulrike Fischer will be in charge of the weather ;-)

      – marmot
      Feb 1 at 19:57






    • 1





      @KJO Yes, getting old.

      – marmot
      Feb 3 at 0:23








    1




    1





    @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

    – Raaja
    Feb 1 at 17:06





    @marmot I didnt thought about clipping part :/ I was looking to make it grow along y-axis and failed miserably (sob!).

    – Raaja
    Feb 1 at 17:06




    1




    1





    Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

    – KJO
    Feb 1 at 17:42





    Its a truncated cone for reality check commons.wikimedia.org/wiki/File:578metric-micrometer.jpg#/media/…

    – KJO
    Feb 1 at 17:42




    4




    4





    @marmot Naaice!

    – Raaja
    Feb 1 at 19:36





    @marmot Naaice!

    – Raaja
    Feb 1 at 19:36




    1




    1





    @KJO I think Ulrike Fischer will be in charge of the weather ;-)

    – marmot
    Feb 1 at 19:57





    @KJO I think Ulrike Fischer will be in charge of the weather ;-)

    – marmot
    Feb 1 at 19:57




    1




    1





    @KJO Yes, getting old.

    – marmot
    Feb 3 at 0:23





    @KJO Yes, getting old.

    – marmot
    Feb 3 at 0:23











    27














    Adaptions:




    • I set the orign to the "0" of the horizontal scale.


    Description:




    • added 3 parameters:



      • lenx is the horizontal length


      • xscale is the scaling of one horizontal length unit


      • startrange is the starting number of the vertical scale



    • for loops and modulo calculations are used for drawing the scales


    Code:



    documentclass[margin=3mm,tikz]{standalone}

    begin{document}

    newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
    newcommand{xscale}{.2}
    newcommand{startrange}{0} % e.g.: 0 or 7

    begin{tikzpicture}
    % scale right
    foreach i in {1, ..., 18} {
    pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
    ifnumpgfmathresult>0
    % long line with number
    draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
    else
    % short line
    draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
    fi
    }

    % horizontal scale (left)
    draw[red] (0,0) -- (lenx*xscale,0);
    draw[thick] (0,.3) -- (0,-.15) node[below]{0};
    pgfmathparse{int(lenx)}
    foreach i in {0, ..., pgfmathresult} {
    pgfmathparse{Mod(i,2)==0?1:0}
    ifnumpgfmathresult>0
    draw (i*xscale,0) -- (i*xscale,.15);
    else
    draw (i*xscale,0) -- (i*xscale,-.15);
    fi
    }

    % borders
    draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
    draw (-.5,1)--(lenx*xscale,1);
    draw (-.5,-1)--(lenx*xscale,-1);

    draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
    draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
    draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

    % curvy lines (left and right)
    draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
    draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
    draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
    draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
    end{tikzpicture}
    end{document}


    Results:



    enter image description here






    share|improve this answer




























      27














      Adaptions:




      • I set the orign to the "0" of the horizontal scale.


      Description:




      • added 3 parameters:



        • lenx is the horizontal length


        • xscale is the scaling of one horizontal length unit


        • startrange is the starting number of the vertical scale



      • for loops and modulo calculations are used for drawing the scales


      Code:



      documentclass[margin=3mm,tikz]{standalone}

      begin{document}

      newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
      newcommand{xscale}{.2}
      newcommand{startrange}{0} % e.g.: 0 or 7

      begin{tikzpicture}
      % scale right
      foreach i in {1, ..., 18} {
      pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
      ifnumpgfmathresult>0
      % long line with number
      draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
      else
      % short line
      draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
      fi
      }

      % horizontal scale (left)
      draw[red] (0,0) -- (lenx*xscale,0);
      draw[thick] (0,.3) -- (0,-.15) node[below]{0};
      pgfmathparse{int(lenx)}
      foreach i in {0, ..., pgfmathresult} {
      pgfmathparse{Mod(i,2)==0?1:0}
      ifnumpgfmathresult>0
      draw (i*xscale,0) -- (i*xscale,.15);
      else
      draw (i*xscale,0) -- (i*xscale,-.15);
      fi
      }

      % borders
      draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
      draw (-.5,1)--(lenx*xscale,1);
      draw (-.5,-1)--(lenx*xscale,-1);

      draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
      draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
      draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

      % curvy lines (left and right)
      draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
      draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
      draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
      draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
      end{tikzpicture}
      end{document}


      Results:



      enter image description here






      share|improve this answer


























        27












        27








        27







        Adaptions:




        • I set the orign to the "0" of the horizontal scale.


        Description:




        • added 3 parameters:



          • lenx is the horizontal length


          • xscale is the scaling of one horizontal length unit


          • startrange is the starting number of the vertical scale



        • for loops and modulo calculations are used for drawing the scales


        Code:



        documentclass[margin=3mm,tikz]{standalone}

        begin{document}

        newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
        newcommand{xscale}{.2}
        newcommand{startrange}{0} % e.g.: 0 or 7

        begin{tikzpicture}
        % scale right
        foreach i in {1, ..., 18} {
        pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
        ifnumpgfmathresult>0
        % long line with number
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
        else
        % short line
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
        fi
        }

        % horizontal scale (left)
        draw[red] (0,0) -- (lenx*xscale,0);
        draw[thick] (0,.3) -- (0,-.15) node[below]{0};
        pgfmathparse{int(lenx)}
        foreach i in {0, ..., pgfmathresult} {
        pgfmathparse{Mod(i,2)==0?1:0}
        ifnumpgfmathresult>0
        draw (i*xscale,0) -- (i*xscale,.15);
        else
        draw (i*xscale,0) -- (i*xscale,-.15);
        fi
        }

        % borders
        draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
        draw (-.5,1)--(lenx*xscale,1);
        draw (-.5,-1)--(lenx*xscale,-1);

        draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
        draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
        draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

        % curvy lines (left and right)
        draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
        draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
        draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
        draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
        end{tikzpicture}
        end{document}


        Results:



        enter image description here






        share|improve this answer













        Adaptions:




        • I set the orign to the "0" of the horizontal scale.


        Description:




        • added 3 parameters:



          • lenx is the horizontal length


          • xscale is the scaling of one horizontal length unit


          • startrange is the starting number of the vertical scale



        • for loops and modulo calculations are used for drawing the scales


        Code:



        documentclass[margin=3mm,tikz]{standalone}

        begin{document}

        newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
        newcommand{xscale}{.2}
        newcommand{startrange}{0} % e.g.: 0 or 7

        begin{tikzpicture}
        % scale right
        foreach i in {1, ..., 18} {
        pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
        ifnumpgfmathresult>0
        % long line with number
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
        else
        % short line
        draw[blue] (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
        fi
        }

        % horizontal scale (left)
        draw[red] (0,0) -- (lenx*xscale,0);
        draw[thick] (0,.3) -- (0,-.15) node[below]{0};
        pgfmathparse{int(lenx)}
        foreach i in {0, ..., pgfmathresult} {
        pgfmathparse{Mod(i,2)==0?1:0}
        ifnumpgfmathresult>0
        draw (i*xscale,0) -- (i*xscale,.15);
        else
        draw (i*xscale,0) -- (i*xscale,-.15);
        fi
        }

        % borders
        draw[thin, green] (lenx*xscale,1)--(lenx*xscale,-1);
        draw (-.5,1)--(lenx*xscale,1);
        draw (-.5,-1)--(lenx*xscale,-1);

        draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
        draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
        draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

        % curvy lines (left and right)
        draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
        draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
        draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
        draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
        end{tikzpicture}
        end{document}


        Results:



        enter image description here







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Feb 1 at 15:23









        dexteritasdexteritas

        3,7901127




        3,7901127























            16














            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here






            share|improve this answer



















            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              Feb 1 at 14:57






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Hairless Armpit
              Feb 1 at 14:58






            • 8





              ... as usual ;-).

              – AlexG
              Feb 1 at 18:32











            • @ArtificialStupidity Flags as NAA.

              – EKons
              Feb 3 at 11:35






            • 1





              @EKons: Flags as ANA.

              – Artificial Hairless Armpit
              Feb 3 at 12:33
















            16














            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here






            share|improve this answer



















            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              Feb 1 at 14:57






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Hairless Armpit
              Feb 1 at 14:58






            • 8





              ... as usual ;-).

              – AlexG
              Feb 1 at 18:32











            • @ArtificialStupidity Flags as NAA.

              – EKons
              Feb 3 at 11:35






            • 1





              @EKons: Flags as ANA.

              – Artificial Hairless Armpit
              Feb 3 at 12:33














            16












            16








            16







            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here






            share|improve this answer













            A PSTricks solution just for fun purposes. I focus on the scale. The aesthetic aspects are too trivial.



            documentclass[pstricks,border=12pt,12pt]{standalone}
            usepackage{multido}
            usepackage[nomessages]{fp}

            makeatletter
            defvernier#1{%
            begingroup
            psset{yunit=2mm,xunit=1mm,linecolor=red,linewidth=.8pt,linecap=0}
            pspolygon[fillcolor=yellow,fillstyle=solid,opacity=.9,linestyle=none,linewidth=.8pt,linearc=1pt](0,-6)(0,6)(6,7.5)(10,7.5)(10,-7.5)(6,-7.5)
            multido{iy=-5+1,in={numexpr#1-5relax}+1}{11}{%
            pst@modin{50}lbl
            pst@modlbl{5}tmp
            psline(0,iy)(!tmpspace 0 ne {2} {5} ifelse iyspace)
            ifnumtmp=0uput[0](3.5,iy){textcolor{red}{$lbl$}}fi
            }
            psline(.5pslinewidth,-5)(.5pslinewidth,5)
            endgroup
            }

            newcommandmicrometer[1]{%
            bgroup
            psset{xunit=.2mm,yunit=1cm,linewidth=1.6pt}
            begin{pspicture}[linecolor=black,linecap=2](0,-1.3)(150,1.7)
            FPevalargs{trunc(#1*100:0)}
            pst@mod{args}{100}position
            FPevallbl{trunc(args/100:0)}
            multido{ix=0+50}{4}{%
            pst@modix{100}rem
            ifnumrem=0
            psline(ix,-17pt)(ix,17pt)
            uput[90](ix,16pt){lbl}
            FPevallbl{trunc(lbl+1:0)}
            else
            pst@modix{50}rem
            ifnumrem=0
            psline(ix,-5pt)(ix,5pt)
            fi
            fi}
            psline(150,0)
            rput(dimexprpositionpsxunit-.4ptrelax,0){vernier{args}}
            rput(75,1.75){scriptsize#1}
            end{pspicture}
            egroup
            }
            makeatother

            begin{document}
            multido{n=3.00+0.01}{100}{micrometer{n}}
            %micrometer{2.34}
            end{document}


            enter image description here







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Feb 1 at 14:52









            Artificial Hairless ArmpitArtificial Hairless Armpit

            5,06411242




            5,06411242








            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              Feb 1 at 14:57






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Hairless Armpit
              Feb 1 at 14:58






            • 8





              ... as usual ;-).

              – AlexG
              Feb 1 at 18:32











            • @ArtificialStupidity Flags as NAA.

              – EKons
              Feb 3 at 11:35






            • 1





              @EKons: Flags as ANA.

              – Artificial Hairless Armpit
              Feb 3 at 12:33














            • 3





              +1. However, I think the OP only asks how to draw the figures :)

              – JouleV
              Feb 1 at 14:57






            • 3





              @JouleV: I was not trying to answer the OP question. :-)

              – Artificial Hairless Armpit
              Feb 1 at 14:58






            • 8





              ... as usual ;-).

              – AlexG
              Feb 1 at 18:32











            • @ArtificialStupidity Flags as NAA.

              – EKons
              Feb 3 at 11:35






            • 1





              @EKons: Flags as ANA.

              – Artificial Hairless Armpit
              Feb 3 at 12:33








            3




            3





            +1. However, I think the OP only asks how to draw the figures :)

            – JouleV
            Feb 1 at 14:57





            +1. However, I think the OP only asks how to draw the figures :)

            – JouleV
            Feb 1 at 14:57




            3




            3





            @JouleV: I was not trying to answer the OP question. :-)

            – Artificial Hairless Armpit
            Feb 1 at 14:58





            @JouleV: I was not trying to answer the OP question. :-)

            – Artificial Hairless Armpit
            Feb 1 at 14:58




            8




            8





            ... as usual ;-).

            – AlexG
            Feb 1 at 18:32





            ... as usual ;-).

            – AlexG
            Feb 1 at 18:32













            @ArtificialStupidity Flags as NAA.

            – EKons
            Feb 3 at 11:35





            @ArtificialStupidity Flags as NAA.

            – EKons
            Feb 3 at 11:35




            1




            1





            @EKons: Flags as ANA.

            – Artificial Hairless Armpit
            Feb 3 at 12:33





            @EKons: Flags as ANA.

            – Artificial Hairless Armpit
            Feb 3 at 12:33











            3














            Foreword: This answer is only a tiny improvement of @dexteritas' answer so that the output figure fits the given figure more accurately.1 Don't accept this answer.





            I make a little change in the startrange definition and the y-coordinate of points in the horizontal scale.



            Diagram 1:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{1} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here



            Diagram 2:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{0.4} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{6} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here





            1 Micrometer is, of course, a tool for very accurate measurement, so I think the accuracy of the figure makes sense in this case.






            share|improve this answer
























            • You changed startrange from 0 to 1 in first diagram, so the range goes from 1 to 18, but in the question it goes from 0 to 17 just as in my answer. For the second diagram I chose another range as in the quesiton, just to show the dynamic of the vertical scale. Your second adaption is to move the horizontal axis away from the vertical center? So to match the figure of the question one could move the y-coordinates by +0.08, but I thought it would be more "accurate" to assume the horizontal scale should be centered. For such a tiny change a comment would certainly have been sufficient.

              – dexteritas
              Feb 9 at 19:45
















            3














            Foreword: This answer is only a tiny improvement of @dexteritas' answer so that the output figure fits the given figure more accurately.1 Don't accept this answer.





            I make a little change in the startrange definition and the y-coordinate of points in the horizontal scale.



            Diagram 1:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{1} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here



            Diagram 2:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{0.4} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{6} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here





            1 Micrometer is, of course, a tool for very accurate measurement, so I think the accuracy of the figure makes sense in this case.






            share|improve this answer
























            • You changed startrange from 0 to 1 in first diagram, so the range goes from 1 to 18, but in the question it goes from 0 to 17 just as in my answer. For the second diagram I chose another range as in the quesiton, just to show the dynamic of the vertical scale. Your second adaption is to move the horizontal axis away from the vertical center? So to match the figure of the question one could move the y-coordinates by +0.08, but I thought it would be more "accurate" to assume the horizontal scale should be centered. For such a tiny change a comment would certainly have been sufficient.

              – dexteritas
              Feb 9 at 19:45














            3












            3








            3







            Foreword: This answer is only a tiny improvement of @dexteritas' answer so that the output figure fits the given figure more accurately.1 Don't accept this answer.





            I make a little change in the startrange definition and the y-coordinate of points in the horizontal scale.



            Diagram 1:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{1} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here



            Diagram 2:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{0.4} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{6} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here





            1 Micrometer is, of course, a tool for very accurate measurement, so I think the accuracy of the figure makes sense in this case.






            share|improve this answer













            Foreword: This answer is only a tiny improvement of @dexteritas' answer so that the output figure fits the given figure more accurately.1 Don't accept this answer.





            I make a little change in the startrange definition and the y-coordinate of points in the horizontal scale.



            Diagram 1:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{5.3} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{1} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here



            Diagram 2:



            documentclass[margin=3mm,tikz]{standalone}

            begin{document}

            newcommand{lenx}{0.4} % e.g.: 0.4 or 5.3
            newcommand{xscale}{.2}
            newcommand{startrange}{6} % e.g.: 0 or 7

            begin{tikzpicture}
            % scale right
            foreach i in {1, ..., 18} {
            pgfmathparse{Mod(i-1+startrange,5)==0?1:0}
            ifnumpgfmathresult>0
            % long line with number
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.5, -1+i*2.5/19 -.25) node[right]{pgfmathparse{int(i-1+startrange)}pgfmathresult};%
            else
            % short line
            draw (lenx*xscale, -1+i*2/19) -- (lenx*xscale+.25, -1+i*2.25/19 -.125);
            fi
            }

            % horizontal scale (left)
            draw (0,-.04) -- (lenx*xscale,-.04);
            draw[thick] (0,.26) -- (0,-.19) node[below]{0};
            pgfmathparse{int(lenx)}
            foreach i in {0, ..., pgfmathresult} {
            pgfmathparse{Mod(i,2)==0?1:0}
            ifnumpgfmathresult>0
            draw (i*xscale,-.04) -- (i*xscale,.11);
            else
            draw (i*xscale,-.04) -- (i*xscale,-.19);
            fi
            }

            % borders
            draw[thin] (lenx*xscale,1)--(lenx*xscale,-1);
            draw (-.5,1)--(lenx*xscale,1);
            draw (-.5,-1)--(lenx*xscale,-1);

            draw (lenx*xscale,1)--++(1.5,1)--++(2,0);
            draw (lenx*xscale,-1)--++(1.5,-1)--++(2,0);
            draw[thin] (lenx*xscale+1.5,2)--++(0,-4);

            % curvy lines (left and right)
            draw (-.5,-1) to[out=130,in=-130] (-.5,0) to[out=130,in=-130] (-.5,1);
            draw[very thin] (-.5,0) to[out=50,in=-50] (-.5,1);
            draw (lenx*xscale+3.5,2) to[out=-50,in=50] (lenx*xscale+3.5,0) to[out=-50,in=50] (lenx*xscale+3.5,-2);
            draw[very thin] (lenx*xscale+3.5,0) to[out=-130,in=130] (lenx*xscale+3.5,-2);
            end{tikzpicture}
            end{document}


            enter image description here





            1 Micrometer is, of course, a tool for very accurate measurement, so I think the accuracy of the figure makes sense in this case.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Feb 4 at 8:26









            JouleVJouleV

            12.4k22663




            12.4k22663













            • You changed startrange from 0 to 1 in first diagram, so the range goes from 1 to 18, but in the question it goes from 0 to 17 just as in my answer. For the second diagram I chose another range as in the quesiton, just to show the dynamic of the vertical scale. Your second adaption is to move the horizontal axis away from the vertical center? So to match the figure of the question one could move the y-coordinates by +0.08, but I thought it would be more "accurate" to assume the horizontal scale should be centered. For such a tiny change a comment would certainly have been sufficient.

              – dexteritas
              Feb 9 at 19:45



















            • You changed startrange from 0 to 1 in first diagram, so the range goes from 1 to 18, but in the question it goes from 0 to 17 just as in my answer. For the second diagram I chose another range as in the quesiton, just to show the dynamic of the vertical scale. Your second adaption is to move the horizontal axis away from the vertical center? So to match the figure of the question one could move the y-coordinates by +0.08, but I thought it would be more "accurate" to assume the horizontal scale should be centered. For such a tiny change a comment would certainly have been sufficient.

              – dexteritas
              Feb 9 at 19:45

















            You changed startrange from 0 to 1 in first diagram, so the range goes from 1 to 18, but in the question it goes from 0 to 17 just as in my answer. For the second diagram I chose another range as in the quesiton, just to show the dynamic of the vertical scale. Your second adaption is to move the horizontal axis away from the vertical center? So to match the figure of the question one could move the y-coordinates by +0.08, but I thought it would be more "accurate" to assume the horizontal scale should be centered. For such a tiny change a comment would certainly have been sufficient.

            – dexteritas
            Feb 9 at 19:45





            You changed startrange from 0 to 1 in first diagram, so the range goes from 1 to 18, but in the question it goes from 0 to 17 just as in my answer. For the second diagram I chose another range as in the quesiton, just to show the dynamic of the vertical scale. Your second adaption is to move the horizontal axis away from the vertical center? So to match the figure of the question one could move the y-coordinates by +0.08, but I thought it would be more "accurate" to assume the horizontal scale should be centered. For such a tiny change a comment would certainly have been sufficient.

            – dexteritas
            Feb 9 at 19:45


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f472876%2fhow-to-draw-micrometer-scale-using-tikz%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            'app-layout' is not a known element: how to share Component with different Modules

            SQL update select statement