Implications among assertions
$begingroup$
Explain implications among these assertions:
a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.
b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.
c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.
(Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).
So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.
Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$
Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).
Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?
real-analysis partial-derivative
$endgroup$
add a comment |
$begingroup$
Explain implications among these assertions:
a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.
b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.
c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.
(Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).
So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.
Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$
Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).
Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?
real-analysis partial-derivative
$endgroup$
add a comment |
$begingroup$
Explain implications among these assertions:
a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.
b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.
c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.
(Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).
So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.
Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$
Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).
Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?
real-analysis partial-derivative
$endgroup$
Explain implications among these assertions:
a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.
b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.
c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.
(Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).
So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.
Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$
Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).
Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?
real-analysis partial-derivative
real-analysis partial-derivative
asked Feb 2 at 16:27
dxdydzdxdydz
49110
49110
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097467%2fimplications-among-assertions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097467%2fimplications-among-assertions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown