Implications among assertions












0












$begingroup$


Explain implications among these assertions:



a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.

b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.

c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.

(Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).



So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.

Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$



Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).



Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Explain implications among these assertions:



    a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.

    b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.

    c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.

    (Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).



    So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.

    Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$



    Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
    So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).



    Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Explain implications among these assertions:



      a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.

      b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.

      c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.

      (Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).



      So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.

      Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$



      Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
      So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).



      Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?










      share|cite|improve this question









      $endgroup$




      Explain implications among these assertions:



      a. The function $f:mathbb R^2rightarrow mathbb R$ is continuously differentiable.

      b. The function $f:mathbb R^2rightarrow mathbb R$ has directional derivatives in all directions at each point in $mathbb R^2$.

      c.The function $f:mathbb R^2rightarrow mathbb R$ has first order partial derivatives at each point in $mathbb R^2$.

      (Hint: for $bnRightarrow a$ consider $f=begin {cases} sin(frac{y^2}{x})sqrt{x^2+y^2}, xneq0 \0,x=0 end {cases}$ ).



      So, if $f$ is continuously differentiable, then, obviously, it has first order partial derivatives, so $a Rightarrow c$, however the converse is not true.

      Following the hint consider $$frac{partial f}{partial vec{p}}(vec{0})=lim_{trightarrow 0}frac{f(tp_1,tp_2)-f(0,0)}{t}=lim_{trightarrow 0}frac{sin(frac{(tp_2)^2}{tp_1})sqrt{t^2(p_1^2+p_2^2)}}{t}=lim_{trightarrow 0}frac{sin(frac{tp_2^2}{p_1})|t|sqrt{(p_1^2+p_2^2)}}{t}=0$$



      Also $frac{partial f}{partial x} (x,y)=frac{x^3 sin(frac{y^2}{x}) - y^2 (x^2 + y^2) cos(frac{y^2}{x})}{x^2sqrt{x^2 + y^2}}$, and $frac{partial f}{partial x} (0,0)=frac{f(t,0)-f(0,0)}{t}=0.$ But $$lim_{(x,y)rightarrow (0,0)}frac{partial f}{partial x} (x,y)=text{(restricted to the line } x=my^2)=lim_{yrightarrow 0} frac{m^3 y^6 sin(frac{1}{m}) - y^2 (m^2 y^4 + y^2) cos(frac{1}{m}))}{m^2 y^4 sqrt{m^2 y^4 + y^2}} = -infty neq 0.$$
      So $frac{partial f}{partial x} (x,y)$ is not continuous at (0,0).



      Are there any mistakes in my prove? And I don't know how to prove/disprove other implications, can somebody show how to prove or give counterexamples to these implications?







      real-analysis partial-derivative






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 2 at 16:27









      dxdydzdxdydz

      49110




      49110






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097467%2fimplications-among-assertions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097467%2fimplications-among-assertions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          WPF add header to Image with URL pettitions [duplicate]