A description of the compact symplectic group
$begingroup$
Let $mathrm{Sp}(2m;mathbb{C})={Xinmathrm{GL}(2m;mathbb{C});X^tOmega X=Omega}$, where $Omega=begin{bmatrix}0& I_m\ -I_m& 0end{bmatrix}$, $I_m$ is $mtimes m$ identity matrix.
The compact symplectic group is defined by $mathrm{Sp}(m)=mathrm{Sp}(2m;mathbb{C})cap U(2m)$. The following statement is from Kobayashi's Differential Geometry of Complex Vector Bundles pp.45.
By simple calculation we obtain
$$mathrm{Sp}(m)=left{begin{bmatrix} A& B\-bar{B}&bar{A}end{bmatrix};bar{A}^tA+B^tbar{B}=I_m,bar{A}^tB=B^tbar{A}right}.$$
However I cannot obtain this form via computation. If we write $Xinmathrm{Sp}(m)$ as $X=begin{bmatrix} A& B\C&Dend{bmatrix}$, then from $X^tOmega X=Omega$ and $bar{X}^tX=I$, we obtain
$$A^tC=C^tAquad B^tD=D^t Bquad A^tD=C^tB+I_mquad D^tA=B^tC+I_m$$ $$ bar{A}^tB=-bar{C}^tDquadbar{B}^tA=-bar{D}^tCquadbar{A}^tA+bar{C}^tC=I_mquadbar{B}^tB+bar{D}^tD=I_m.$$
The third and fourth equations are equivalent, fifth and sixth equations are equivalent. How to deduce $C=-bar{B}$ and $D=bar{A}$?
I appreciate it if you can give a proof or a counterexample.
linear-algebra matrices symplectic-linear-algebra classical-groups
$endgroup$
add a comment |
$begingroup$
Let $mathrm{Sp}(2m;mathbb{C})={Xinmathrm{GL}(2m;mathbb{C});X^tOmega X=Omega}$, where $Omega=begin{bmatrix}0& I_m\ -I_m& 0end{bmatrix}$, $I_m$ is $mtimes m$ identity matrix.
The compact symplectic group is defined by $mathrm{Sp}(m)=mathrm{Sp}(2m;mathbb{C})cap U(2m)$. The following statement is from Kobayashi's Differential Geometry of Complex Vector Bundles pp.45.
By simple calculation we obtain
$$mathrm{Sp}(m)=left{begin{bmatrix} A& B\-bar{B}&bar{A}end{bmatrix};bar{A}^tA+B^tbar{B}=I_m,bar{A}^tB=B^tbar{A}right}.$$
However I cannot obtain this form via computation. If we write $Xinmathrm{Sp}(m)$ as $X=begin{bmatrix} A& B\C&Dend{bmatrix}$, then from $X^tOmega X=Omega$ and $bar{X}^tX=I$, we obtain
$$A^tC=C^tAquad B^tD=D^t Bquad A^tD=C^tB+I_mquad D^tA=B^tC+I_m$$ $$ bar{A}^tB=-bar{C}^tDquadbar{B}^tA=-bar{D}^tCquadbar{A}^tA+bar{C}^tC=I_mquadbar{B}^tB+bar{D}^tD=I_m.$$
The third and fourth equations are equivalent, fifth and sixth equations are equivalent. How to deduce $C=-bar{B}$ and $D=bar{A}$?
I appreciate it if you can give a proof or a counterexample.
linear-algebra matrices symplectic-linear-algebra classical-groups
$endgroup$
add a comment |
$begingroup$
Let $mathrm{Sp}(2m;mathbb{C})={Xinmathrm{GL}(2m;mathbb{C});X^tOmega X=Omega}$, where $Omega=begin{bmatrix}0& I_m\ -I_m& 0end{bmatrix}$, $I_m$ is $mtimes m$ identity matrix.
The compact symplectic group is defined by $mathrm{Sp}(m)=mathrm{Sp}(2m;mathbb{C})cap U(2m)$. The following statement is from Kobayashi's Differential Geometry of Complex Vector Bundles pp.45.
By simple calculation we obtain
$$mathrm{Sp}(m)=left{begin{bmatrix} A& B\-bar{B}&bar{A}end{bmatrix};bar{A}^tA+B^tbar{B}=I_m,bar{A}^tB=B^tbar{A}right}.$$
However I cannot obtain this form via computation. If we write $Xinmathrm{Sp}(m)$ as $X=begin{bmatrix} A& B\C&Dend{bmatrix}$, then from $X^tOmega X=Omega$ and $bar{X}^tX=I$, we obtain
$$A^tC=C^tAquad B^tD=D^t Bquad A^tD=C^tB+I_mquad D^tA=B^tC+I_m$$ $$ bar{A}^tB=-bar{C}^tDquadbar{B}^tA=-bar{D}^tCquadbar{A}^tA+bar{C}^tC=I_mquadbar{B}^tB+bar{D}^tD=I_m.$$
The third and fourth equations are equivalent, fifth and sixth equations are equivalent. How to deduce $C=-bar{B}$ and $D=bar{A}$?
I appreciate it if you can give a proof or a counterexample.
linear-algebra matrices symplectic-linear-algebra classical-groups
$endgroup$
Let $mathrm{Sp}(2m;mathbb{C})={Xinmathrm{GL}(2m;mathbb{C});X^tOmega X=Omega}$, where $Omega=begin{bmatrix}0& I_m\ -I_m& 0end{bmatrix}$, $I_m$ is $mtimes m$ identity matrix.
The compact symplectic group is defined by $mathrm{Sp}(m)=mathrm{Sp}(2m;mathbb{C})cap U(2m)$. The following statement is from Kobayashi's Differential Geometry of Complex Vector Bundles pp.45.
By simple calculation we obtain
$$mathrm{Sp}(m)=left{begin{bmatrix} A& B\-bar{B}&bar{A}end{bmatrix};bar{A}^tA+B^tbar{B}=I_m,bar{A}^tB=B^tbar{A}right}.$$
However I cannot obtain this form via computation. If we write $Xinmathrm{Sp}(m)$ as $X=begin{bmatrix} A& B\C&Dend{bmatrix}$, then from $X^tOmega X=Omega$ and $bar{X}^tX=I$, we obtain
$$A^tC=C^tAquad B^tD=D^t Bquad A^tD=C^tB+I_mquad D^tA=B^tC+I_m$$ $$ bar{A}^tB=-bar{C}^tDquadbar{B}^tA=-bar{D}^tCquadbar{A}^tA+bar{C}^tC=I_mquadbar{B}^tB+bar{D}^tD=I_m.$$
The third and fourth equations are equivalent, fifth and sixth equations are equivalent. How to deduce $C=-bar{B}$ and $D=bar{A}$?
I appreciate it if you can give a proof or a counterexample.
linear-algebra matrices symplectic-linear-algebra classical-groups
linear-algebra matrices symplectic-linear-algebra classical-groups
edited Mar 13 at 14:04
Nienz
asked Feb 2 at 17:18
NienzNienz
1108
1108
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097532%2fa-description-of-the-compact-symplectic-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097532%2fa-description-of-the-compact-symplectic-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown