The area of a triangle determined by the bisectors.












4












$begingroup$


How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
bisection



$AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.



I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.



Thanks :)










share|cite|improve this question









$endgroup$

















    4












    $begingroup$


    How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
    bisection



    $AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.



    I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.



    Thanks :)










    share|cite|improve this question









    $endgroup$















      4












      4








      4


      2



      $begingroup$


      How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
      bisection



      $AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.



      I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.



      Thanks :)










      share|cite|improve this question









      $endgroup$




      How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
      bisection



      $AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.



      I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.



      Thanks :)







      geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 3 '13 at 0:44









      IuliIuli

      3,66413078




      3,66413078






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          We'll derive the equation using the fact:
          $$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
          Using the angle bisector theorem we get:
          $$BP=frac{ac}{a+b},quad (1)$$
          $$BR=frac{ac}{b+c}, quad (2)$$
          $$CR=frac{ab}{b+c},quad (3)$$
          $$CQ=frac{ab}{a+c},quad (4)$$
          $$AQ=frac{bc}{a+c},quad (5)$$
          and
          $$AP=frac{bc}{a+b}. quad (6)$$



          Each mentioned area can be calculated using:



          $$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
          $$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
          $$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
          and
          $$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$



          Let $R$ be the circumradius, we know that:
          $$sin alpha = frac{a}{2R}, quad (11)$$
          $$sin beta = frac{b}{2R}, quad (12)$$
          $$sin gamma = frac{c}{2R}, quad (13)$$



          Now if we substitute all the 13 equations in equation $(I)$ we get:
          $$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$



          $$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$



          $$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
          $$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
          Using Heron's formula we are done.






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
            may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."






            share|cite|improve this answer











            $endgroup$














              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f269496%2fthe-area-of-a-triangle-determined-by-the-bisectors%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              We'll derive the equation using the fact:
              $$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
              Using the angle bisector theorem we get:
              $$BP=frac{ac}{a+b},quad (1)$$
              $$BR=frac{ac}{b+c}, quad (2)$$
              $$CR=frac{ab}{b+c},quad (3)$$
              $$CQ=frac{ab}{a+c},quad (4)$$
              $$AQ=frac{bc}{a+c},quad (5)$$
              and
              $$AP=frac{bc}{a+b}. quad (6)$$



              Each mentioned area can be calculated using:



              $$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
              $$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
              $$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
              and
              $$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$



              Let $R$ be the circumradius, we know that:
              $$sin alpha = frac{a}{2R}, quad (11)$$
              $$sin beta = frac{b}{2R}, quad (12)$$
              $$sin gamma = frac{c}{2R}, quad (13)$$



              Now if we substitute all the 13 equations in equation $(I)$ we get:
              $$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$



              $$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$



              $$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
              $$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
              Using Heron's formula we are done.






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                We'll derive the equation using the fact:
                $$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
                Using the angle bisector theorem we get:
                $$BP=frac{ac}{a+b},quad (1)$$
                $$BR=frac{ac}{b+c}, quad (2)$$
                $$CR=frac{ab}{b+c},quad (3)$$
                $$CQ=frac{ab}{a+c},quad (4)$$
                $$AQ=frac{bc}{a+c},quad (5)$$
                and
                $$AP=frac{bc}{a+b}. quad (6)$$



                Each mentioned area can be calculated using:



                $$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
                $$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
                $$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
                and
                $$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$



                Let $R$ be the circumradius, we know that:
                $$sin alpha = frac{a}{2R}, quad (11)$$
                $$sin beta = frac{b}{2R}, quad (12)$$
                $$sin gamma = frac{c}{2R}, quad (13)$$



                Now if we substitute all the 13 equations in equation $(I)$ we get:
                $$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$



                $$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$



                $$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
                $$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
                Using Heron's formula we are done.






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  We'll derive the equation using the fact:
                  $$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
                  Using the angle bisector theorem we get:
                  $$BP=frac{ac}{a+b},quad (1)$$
                  $$BR=frac{ac}{b+c}, quad (2)$$
                  $$CR=frac{ab}{b+c},quad (3)$$
                  $$CQ=frac{ab}{a+c},quad (4)$$
                  $$AQ=frac{bc}{a+c},quad (5)$$
                  and
                  $$AP=frac{bc}{a+b}. quad (6)$$



                  Each mentioned area can be calculated using:



                  $$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
                  $$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
                  $$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
                  and
                  $$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$



                  Let $R$ be the circumradius, we know that:
                  $$sin alpha = frac{a}{2R}, quad (11)$$
                  $$sin beta = frac{b}{2R}, quad (12)$$
                  $$sin gamma = frac{c}{2R}, quad (13)$$



                  Now if we substitute all the 13 equations in equation $(I)$ we get:
                  $$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$



                  $$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$



                  $$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
                  $$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
                  Using Heron's formula we are done.






                  share|cite|improve this answer











                  $endgroup$



                  We'll derive the equation using the fact:
                  $$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
                  Using the angle bisector theorem we get:
                  $$BP=frac{ac}{a+b},quad (1)$$
                  $$BR=frac{ac}{b+c}, quad (2)$$
                  $$CR=frac{ab}{b+c},quad (3)$$
                  $$CQ=frac{ab}{a+c},quad (4)$$
                  $$AQ=frac{bc}{a+c},quad (5)$$
                  and
                  $$AP=frac{bc}{a+b}. quad (6)$$



                  Each mentioned area can be calculated using:



                  $$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
                  $$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
                  $$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
                  and
                  $$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$



                  Let $R$ be the circumradius, we know that:
                  $$sin alpha = frac{a}{2R}, quad (11)$$
                  $$sin beta = frac{b}{2R}, quad (12)$$
                  $$sin gamma = frac{c}{2R}, quad (13)$$



                  Now if we substitute all the 13 equations in equation $(I)$ we get:
                  $$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$



                  $$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$



                  $$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
                  $$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
                  Using Heron's formula we are done.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 3 '13 at 14:04

























                  answered Jan 3 '13 at 13:57









                  RicardoCruzRicardoCruz

                  3,0131017




                  3,0131017























                      2












                      $begingroup$

                      This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
                      may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."






                      share|cite|improve this answer











                      $endgroup$


















                        2












                        $begingroup$

                        This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
                        may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."






                        share|cite|improve this answer











                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
                          may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."






                          share|cite|improve this answer











                          $endgroup$



                          This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
                          may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Nov 5 '18 at 6:01









                          Hrithik Ravi

                          34




                          34










                          answered Jan 3 '13 at 2:17









                          coffeemathcoffeemath

                          27.3k22342




                          27.3k22342






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f269496%2fthe-area-of-a-triangle-determined-by-the-bisectors%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              'app-layout' is not a known element: how to share Component with different Modules

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              WPF add header to Image with URL pettitions [duplicate]