The area of a triangle determined by the bisectors.
$begingroup$
How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
$AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.
I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.
Thanks :)
geometry
$endgroup$
add a comment |
$begingroup$
How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
$AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.
I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.
Thanks :)
geometry
$endgroup$
add a comment |
$begingroup$
How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
$AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.
I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.
Thanks :)
geometry
$endgroup$
How can I calculate the area of a triangle determined by the interior bisectors? What I want to say it is represented in the following picture:
$AQ$ is the bisector of the angle $angle BAC$, $BR$ -bisector for $angle ABC$ and $CP$ -bisector for $angle ACB$. Now, it must calculated the area for the triangle $PQR$ knowing that $AB=c$, $BC=a$ and $CA=b$.
I tried to use the angle bisector theorem for every bisectors but I didn't obtained anything.
Thanks :)
geometry
geometry
asked Jan 3 '13 at 0:44
IuliIuli
3,66413078
3,66413078
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We'll derive the equation using the fact:
$$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
Using the angle bisector theorem we get:
$$BP=frac{ac}{a+b},quad (1)$$
$$BR=frac{ac}{b+c}, quad (2)$$
$$CR=frac{ab}{b+c},quad (3)$$
$$CQ=frac{ab}{a+c},quad (4)$$
$$AQ=frac{bc}{a+c},quad (5)$$
and
$$AP=frac{bc}{a+b}. quad (6)$$
Each mentioned area can be calculated using:
$$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
$$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
$$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
and
$$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$
Let $R$ be the circumradius, we know that:
$$sin alpha = frac{a}{2R}, quad (11)$$
$$sin beta = frac{b}{2R}, quad (12)$$
$$sin gamma = frac{c}{2R}, quad (13)$$
Now if we substitute all the 13 equations in equation $(I)$ we get:
$$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$
$$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$
$$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
$$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
Using Heron's formula we are done.
$endgroup$
add a comment |
$begingroup$
This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f269496%2fthe-area-of-a-triangle-determined-by-the-bisectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We'll derive the equation using the fact:
$$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
Using the angle bisector theorem we get:
$$BP=frac{ac}{a+b},quad (1)$$
$$BR=frac{ac}{b+c}, quad (2)$$
$$CR=frac{ab}{b+c},quad (3)$$
$$CQ=frac{ab}{a+c},quad (4)$$
$$AQ=frac{bc}{a+c},quad (5)$$
and
$$AP=frac{bc}{a+b}. quad (6)$$
Each mentioned area can be calculated using:
$$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
$$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
$$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
and
$$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$
Let $R$ be the circumradius, we know that:
$$sin alpha = frac{a}{2R}, quad (11)$$
$$sin beta = frac{b}{2R}, quad (12)$$
$$sin gamma = frac{c}{2R}, quad (13)$$
Now if we substitute all the 13 equations in equation $(I)$ we get:
$$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$
$$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$
$$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
$$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
Using Heron's formula we are done.
$endgroup$
add a comment |
$begingroup$
We'll derive the equation using the fact:
$$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
Using the angle bisector theorem we get:
$$BP=frac{ac}{a+b},quad (1)$$
$$BR=frac{ac}{b+c}, quad (2)$$
$$CR=frac{ab}{b+c},quad (3)$$
$$CQ=frac{ab}{a+c},quad (4)$$
$$AQ=frac{bc}{a+c},quad (5)$$
and
$$AP=frac{bc}{a+b}. quad (6)$$
Each mentioned area can be calculated using:
$$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
$$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
$$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
and
$$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$
Let $R$ be the circumradius, we know that:
$$sin alpha = frac{a}{2R}, quad (11)$$
$$sin beta = frac{b}{2R}, quad (12)$$
$$sin gamma = frac{c}{2R}, quad (13)$$
Now if we substitute all the 13 equations in equation $(I)$ we get:
$$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$
$$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$
$$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
$$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
Using Heron's formula we are done.
$endgroup$
add a comment |
$begingroup$
We'll derive the equation using the fact:
$$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
Using the angle bisector theorem we get:
$$BP=frac{ac}{a+b},quad (1)$$
$$BR=frac{ac}{b+c}, quad (2)$$
$$CR=frac{ab}{b+c},quad (3)$$
$$CQ=frac{ab}{a+c},quad (4)$$
$$AQ=frac{bc}{a+c},quad (5)$$
and
$$AP=frac{bc}{a+b}. quad (6)$$
Each mentioned area can be calculated using:
$$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
$$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
$$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
and
$$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$
Let $R$ be the circumradius, we know that:
$$sin alpha = frac{a}{2R}, quad (11)$$
$$sin beta = frac{b}{2R}, quad (12)$$
$$sin gamma = frac{c}{2R}, quad (13)$$
Now if we substitute all the 13 equations in equation $(I)$ we get:
$$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$
$$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$
$$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
$$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
Using Heron's formula we are done.
$endgroup$
We'll derive the equation using the fact:
$$A_{PQR}=A_{ABC}-A_{PBR}-A_{RCQ}-A_{QAP}, quad (I)$$
Using the angle bisector theorem we get:
$$BP=frac{ac}{a+b},quad (1)$$
$$BR=frac{ac}{b+c}, quad (2)$$
$$CR=frac{ab}{b+c},quad (3)$$
$$CQ=frac{ab}{a+c},quad (4)$$
$$AQ=frac{bc}{a+c},quad (5)$$
and
$$AP=frac{bc}{a+b}. quad (6)$$
Each mentioned area can be calculated using:
$$A_{PQR}=frac{1}{2}absingamma, quad (7)$$
$$A_{PBR}=frac{1}{2}BPcdot BRsinbeta, quad (8)$$
$$A_{RCQ}=frac{1}{2}CRcdot CQsingamma, quad (9)$$
and
$$A_{QAP}=frac{1}{2}AQcdot APsinalpha. quad (10)$$
Let $R$ be the circumradius, we know that:
$$sin alpha = frac{a}{2R}, quad (11)$$
$$sin beta = frac{b}{2R}, quad (12)$$
$$sin gamma = frac{c}{2R}, quad (13)$$
Now if we substitute all the 13 equations in equation $(I)$ we get:
$$A_{PQR}=frac{1}{2} cdot frac{abc}{2R}-frac{1}{2} frac{a^2c^2b}{(a+b)(b+c)2R}-frac{1}{2} cdot frac{a^2b^2c}{(b+c)(a+c)2R}-frac{1}{2} cdot frac{b^2c^2a}{(a+b)(a+c)2R}, Rightarrow$$
$$A_{PQR}=frac{abc}{4R}[1-frac{ac}{(a+b)(b+c)}-frac{ab}{(b+c)(a+c)}-frac{bc}{(a+b)(a+c)}], Rightarrow$$
$$A_{PQR}=frac{abc}{2R}[frac{abc}{(a+b)(b+c)(a+c)}], Rightarrow$$
$$A_{PQR}=A_{ABC}[frac{2abc}{(a+b)(b+c)(a+c)}]$$
Using Heron's formula we are done.
edited Jan 3 '13 at 14:04
answered Jan 3 '13 at 13:57
RicardoCruzRicardoCruz
3,0131017
3,0131017
add a comment |
add a comment |
$begingroup$
This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."
$endgroup$
add a comment |
$begingroup$
This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."
$endgroup$
add a comment |
$begingroup$
This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."
$endgroup$
This triangle has area $$frac{2abc}{(a+b)(a+c)(b+c)}cdot A,$$ where $A$ is the area of the reference triangle with sides $a,b,c$. It
may be called the "Cevian triangle" with respect to the incenter $I$ of the given reference triangle with sides $a,b,c$, or the "incentral triangle."
edited Nov 5 '18 at 6:01
Hrithik Ravi
34
34
answered Jan 3 '13 at 2:17
coffeemathcoffeemath
27.3k22342
27.3k22342
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f269496%2fthe-area-of-a-triangle-determined-by-the-bisectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown