If $a_0 = -1$ and $sum_{k=0}^nfrac{a_{n-k}}{k+1}=0$, then show $a_n =...
$begingroup$
Bonjour. The following is from IMO 2006:
The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$
In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$
Question: How to show the relation $(1)$?
calculus integration combinatorics complex-analysis analysis
$endgroup$
add a comment |
$begingroup$
Bonjour. The following is from IMO 2006:
The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$
In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$
Question: How to show the relation $(1)$?
calculus integration combinatorics complex-analysis analysis
$endgroup$
$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41
add a comment |
$begingroup$
Bonjour. The following is from IMO 2006:
The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$
In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$
Question: How to show the relation $(1)$?
calculus integration combinatorics complex-analysis analysis
$endgroup$
Bonjour. The following is from IMO 2006:
The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$
In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$
Question: How to show the relation $(1)$?
calculus integration combinatorics complex-analysis analysis
calculus integration combinatorics complex-analysis analysis
edited Feb 2 at 12:14


Blue
49.6k870158
49.6k870158
asked Feb 2 at 12:03


HAMIDINE SOUMAREHAMIDINE SOUMARE
2,061212
2,061212
$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41
add a comment |
$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41
$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41
$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$ holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$ is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$$$
a_0=-1.
$$
In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$ We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$ We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$ which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$ (Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)
This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$ and the claim follows.
$endgroup$
$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097225%2fif-a-0-1-and-sum-k-0n-fraca-n-kk1-0-then-show-a-n-int-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$ holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$ is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$$$
a_0=-1.
$$
In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$ We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$ We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$ which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$ (Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)
This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$ and the claim follows.
$endgroup$
$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15
add a comment |
$begingroup$
The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$ holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$ is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$$$
a_0=-1.
$$
In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$ We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$ We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$ which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$ (Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)
This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$ and the claim follows.
$endgroup$
$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15
add a comment |
$begingroup$
The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$ holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$ is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$$$
a_0=-1.
$$
In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$ We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$ We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$ which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$ (Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)
This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$ and the claim follows.
$endgroup$
The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$ holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$ is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$$$
a_0=-1.
$$
In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$ We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$ We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$ which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$ (Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)
This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$ and the claim follows.
edited Feb 2 at 21:16
answered Feb 2 at 17:46


SongSong
18.6k21651
18.6k21651
$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15
add a comment |
$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15
$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15
$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097225%2fif-a-0-1-and-sum-k-0n-fraca-n-kk1-0-then-show-a-n-int-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41