If $a_0 = -1$ and $sum_{k=0}^nfrac{a_{n-k}}{k+1}=0$, then show $a_n =...












4












$begingroup$


Bonjour. The following is from IMO 2006:



The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$



In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$




Question: How to show the relation $(1)$?











share|cite|improve this question











$endgroup$












  • $begingroup$
    This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
    $endgroup$
    – Zacky
    Feb 2 at 23:41
















4












$begingroup$


Bonjour. The following is from IMO 2006:



The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$



In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$




Question: How to show the relation $(1)$?











share|cite|improve this question











$endgroup$












  • $begingroup$
    This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
    $endgroup$
    – Zacky
    Feb 2 at 23:41














4












4








4


4



$begingroup$


Bonjour. The following is from IMO 2006:



The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$



In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$




Question: How to show the relation $(1)$?











share|cite|improve this question











$endgroup$




Bonjour. The following is from IMO 2006:



The sequence $(a_n)$ is defined recursively by $a_0=-1$ and $$sum_{k=0}^{n}{frac{a_{n-k}}{k+1}}=0, ngeq 1. $$



In the shortlist, the commentator said that this relation holds:
$$a_n=int_{1}^{infty}{frac{dt}{t^n({pi}^2+log^2(t-1))}} qquadforall ngeq 1 tag{1}$$




Question: How to show the relation $(1)$?








calculus integration combinatorics complex-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 12:14









Blue

49.6k870158




49.6k870158










asked Feb 2 at 12:03









HAMIDINE SOUMAREHAMIDINE SOUMARE

2,061212




2,061212












  • $begingroup$
    This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
    $endgroup$
    – Zacky
    Feb 2 at 23:41


















  • $begingroup$
    This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
    $endgroup$
    – Zacky
    Feb 2 at 23:41
















$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41




$begingroup$
This is known as the integral representation for Gregory coefficients: en.wikipedia.org/wiki/Gregory_coefficients
$endgroup$
– Zacky
Feb 2 at 23:41










1 Answer
1






active

oldest

votes


















4












$begingroup$

The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$
holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$
is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$
$$
a_0=-1.
$$

In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$
We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$
We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$
which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$
(Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)

This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$
and the claim follows.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Hell yeah! The master key was the use of convolution. Did not see that. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Feb 2 at 20:15












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097225%2fif-a-0-1-and-sum-k-0n-fraca-n-kk1-0-then-show-a-n-int-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$
holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$
is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$
$$
a_0=-1.
$$

In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$
We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$
We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$
which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$
(Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)

This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$
and the claim follows.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Hell yeah! The master key was the use of convolution. Did not see that. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Feb 2 at 20:15
















4












$begingroup$

The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$
holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$
is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$
$$
a_0=-1.
$$

In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$
We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$
We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$
which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$
(Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)

This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$
and the claim follows.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Hell yeah! The master key was the use of convolution. Did not see that. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Feb 2 at 20:15














4












4








4





$begingroup$

The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$
holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$
is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$
$$
a_0=-1.
$$

In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$
We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$
We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$
which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$
(Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)

This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$
and the claim follows.






share|cite|improve this answer











$endgroup$



The claim is equivalent to
$$
left(a*frac1{i+1}right)_n = -1_{n=0}
$$
holds for every $nge 0$, where $$
left( a*frac1{i+1}right)_n =sum_{k=0}^n a_{n-i}frac{1}{i+1}
$$
is the convolution of $(a_i)_{ige 0}$ and $(frac1{i+1})_{ige 0}$ and
$$
a_n =int_{1}^{infty}frac1{t^n}frac{mathrm d t}{{pi}^2+log^2(t-1)},quad nge 1,
$$
$$
a_0=-1.
$$

In view of the generating function of $(frac1{i+1})_{ige 0}$, which is $-frac{ln(1-x)}x$, it suffices to prove that for $0<x<1$,
$$
sum_{nge 0} a_n x^n=-1+sum_{nge 1}a_n x^n = frac{x}{ln(1-x)}.
$$
We find that
$$begin{eqnarray}
sum_{n=1}^infty a_n x^n &=& int_{1}^{infty}sum_{n=1}^infty left(frac x tright)^nfrac{mathrm d t}{{pi}^2+log^2(t-1)}\ &=&int_{-infty}^{infty}sum_{n=1}^infty left(frac x {1+e^u}right)^nfrac{e^umathrm d u}{{pi}^2+u^2} quad(t=1+e^u)\
&=& int_{-infty}^{infty}frac{x}{(1-x)+e^u}frac{e^umathrm d u}{{pi}^2+u^2}\
&=&int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}.
end{eqnarray}$$
We also observe that
$$
lim_{cto infty}int_{Im z =c}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}=0,
$$
which implies by residue theorem:
$$begin{eqnarray}
int_{Im z =0}frac{x}{(1-x)+e^z}frac{e^zmathrm d z}{{pi}^2+z^2}&=&2pi i sum_{z:Im(z)>0} text{res}_{z}frac{x}{(1-x)+e^z}frac{e^z}{{pi}^2+z^2}\
&=&1+2pi i xsum_{jge 0} frac{1}{left((2j+1)pi i + ln(1-x)right)^2 +pi^2}\
&=&1+xsum_{jge 0} left(frac{1}{(2j+1)pi i + ln(1-x)-pi i} \ -frac{1}{(2j+1)pi i + ln(1-x)+pi i}right)\
&=&1+ frac{x}{ln(1-x)}.
end{eqnarray}$$
(Here, residues are calculated at $z=pi i$ and $(2j+1)pi i +ln(1-x)$ where $jge 0$.)

This shows $$
sum_{nge 0}a_n x^n = frac{x}{ln(1-x)}
$$
and the claim follows.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Feb 2 at 21:16

























answered Feb 2 at 17:46









SongSong

18.6k21651




18.6k21651












  • $begingroup$
    Hell yeah! The master key was the use of convolution. Did not see that. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Feb 2 at 20:15


















  • $begingroup$
    Hell yeah! The master key was the use of convolution. Did not see that. Thanks
    $endgroup$
    – HAMIDINE SOUMARE
    Feb 2 at 20:15
















$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15




$begingroup$
Hell yeah! The master key was the use of convolution. Did not see that. Thanks
$endgroup$
– HAMIDINE SOUMARE
Feb 2 at 20:15


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097225%2fif-a-0-1-and-sum-k-0n-fraca-n-kk1-0-then-show-a-n-int-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith