Polylogarithm grows slower than polynomial proof
$begingroup$
In the CLRS book, there's this part, where it's shown that $$lim_{ntoinfty}frac{(n^b)}{(a^n)} = 0$$. In the same chapter, it uses the aforementioned equation to prove that any polylogarithm function grows slower than any polynomial one, thus, $$lim_{ntoinfty}frac{log b^n}{ n^a}$$. It does that by substituting lgn
for n
and 2^a
for a
in the first equation. How is it allowed to substitute the terms and prove the latter equation.
polynomials polylogarithm
$endgroup$
add a comment |
$begingroup$
In the CLRS book, there's this part, where it's shown that $$lim_{ntoinfty}frac{(n^b)}{(a^n)} = 0$$. In the same chapter, it uses the aforementioned equation to prove that any polylogarithm function grows slower than any polynomial one, thus, $$lim_{ntoinfty}frac{log b^n}{ n^a}$$. It does that by substituting lgn
for n
and 2^a
for a
in the first equation. How is it allowed to substitute the terms and prove the latter equation.
polynomials polylogarithm
$endgroup$
add a comment |
$begingroup$
In the CLRS book, there's this part, where it's shown that $$lim_{ntoinfty}frac{(n^b)}{(a^n)} = 0$$. In the same chapter, it uses the aforementioned equation to prove that any polylogarithm function grows slower than any polynomial one, thus, $$lim_{ntoinfty}frac{log b^n}{ n^a}$$. It does that by substituting lgn
for n
and 2^a
for a
in the first equation. How is it allowed to substitute the terms and prove the latter equation.
polynomials polylogarithm
$endgroup$
In the CLRS book, there's this part, where it's shown that $$lim_{ntoinfty}frac{(n^b)}{(a^n)} = 0$$. In the same chapter, it uses the aforementioned equation to prove that any polylogarithm function grows slower than any polynomial one, thus, $$lim_{ntoinfty}frac{log b^n}{ n^a}$$. It does that by substituting lgn
for n
and 2^a
for a
in the first equation. How is it allowed to substitute the terms and prove the latter equation.
polynomials polylogarithm
polynomials polylogarithm
edited Feb 1 at 11:18
mm-crj
423213
423213
asked Feb 1 at 10:53


chakmeshmachakmeshma
1203
1203
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $a_n:= frac{log b^n}{ n^a}$, then $a_n =frac{n log b}{ n^a}=log b frac{1}{n^{a-1}}.$
We can assume that $log b ne 0.$
Case 1: $a=1.$ Then $a_n to log b .$
Case 2: $a>1$. Then $a_n to 0.$
Case 3: $a<1.$ Then $a_n to infty$, if $b>1$ and $a_n to - infty$, if $0<b<1.$
$endgroup$
$begingroup$
My question is, how does this justify replacing the terms (lgn for n and a for 2^a)
$endgroup$
– chakmeshma
Feb 2 at 6:53
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096083%2fpolylogarithm-grows-slower-than-polynomial-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $a_n:= frac{log b^n}{ n^a}$, then $a_n =frac{n log b}{ n^a}=log b frac{1}{n^{a-1}}.$
We can assume that $log b ne 0.$
Case 1: $a=1.$ Then $a_n to log b .$
Case 2: $a>1$. Then $a_n to 0.$
Case 3: $a<1.$ Then $a_n to infty$, if $b>1$ and $a_n to - infty$, if $0<b<1.$
$endgroup$
$begingroup$
My question is, how does this justify replacing the terms (lgn for n and a for 2^a)
$endgroup$
– chakmeshma
Feb 2 at 6:53
add a comment |
$begingroup$
Let $a_n:= frac{log b^n}{ n^a}$, then $a_n =frac{n log b}{ n^a}=log b frac{1}{n^{a-1}}.$
We can assume that $log b ne 0.$
Case 1: $a=1.$ Then $a_n to log b .$
Case 2: $a>1$. Then $a_n to 0.$
Case 3: $a<1.$ Then $a_n to infty$, if $b>1$ and $a_n to - infty$, if $0<b<1.$
$endgroup$
$begingroup$
My question is, how does this justify replacing the terms (lgn for n and a for 2^a)
$endgroup$
– chakmeshma
Feb 2 at 6:53
add a comment |
$begingroup$
Let $a_n:= frac{log b^n}{ n^a}$, then $a_n =frac{n log b}{ n^a}=log b frac{1}{n^{a-1}}.$
We can assume that $log b ne 0.$
Case 1: $a=1.$ Then $a_n to log b .$
Case 2: $a>1$. Then $a_n to 0.$
Case 3: $a<1.$ Then $a_n to infty$, if $b>1$ and $a_n to - infty$, if $0<b<1.$
$endgroup$
Let $a_n:= frac{log b^n}{ n^a}$, then $a_n =frac{n log b}{ n^a}=log b frac{1}{n^{a-1}}.$
We can assume that $log b ne 0.$
Case 1: $a=1.$ Then $a_n to log b .$
Case 2: $a>1$. Then $a_n to 0.$
Case 3: $a<1.$ Then $a_n to infty$, if $b>1$ and $a_n to - infty$, if $0<b<1.$
answered Feb 1 at 11:29


FredFred
48.5k11849
48.5k11849
$begingroup$
My question is, how does this justify replacing the terms (lgn for n and a for 2^a)
$endgroup$
– chakmeshma
Feb 2 at 6:53
add a comment |
$begingroup$
My question is, how does this justify replacing the terms (lgn for n and a for 2^a)
$endgroup$
– chakmeshma
Feb 2 at 6:53
$begingroup$
My question is, how does this justify replacing the terms (lgn for n and a for 2^a)
$endgroup$
– chakmeshma
Feb 2 at 6:53
$begingroup$
My question is, how does this justify replacing the terms (lgn for n and a for 2^a)
$endgroup$
– chakmeshma
Feb 2 at 6:53
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096083%2fpolylogarithm-grows-slower-than-polynomial-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown