Prove $I-YY^dagger$ is a projection operator for $N(Y)$
$begingroup$
Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.
Thanks in advance!
matrices
$endgroup$
add a comment |
$begingroup$
Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.
Thanks in advance!
matrices
$endgroup$
$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18
$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44
add a comment |
$begingroup$
Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.
Thanks in advance!
matrices
$endgroup$
Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.
Thanks in advance!
matrices
matrices
asked Feb 1 at 8:15
Jingyang LiJingyang Li
113
113
$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18
$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44
add a comment |
$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18
$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44
$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18
$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18
$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44
$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?
$endgroup$
add a comment |
$begingroup$
Since $Y$ is real symmetric,
$Y^dagger = Y^T = Y; tag 1$
thus
$Y^dagger Y = YY^dagger = Y^2, tag 2$
whence
$I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$
it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .
$endgroup$
$begingroup$
why is $Y^dagger = Y^T$ true?
$endgroup$
– Jingyang Li
Feb 3 at 8:44
$begingroup$
@Jingyang: Because $Y$ is real and symmetric.
$endgroup$
– Robert Lewis
Feb 3 at 12:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095969%2fprove-i-yy-dagger-is-a-projection-operator-for-ny%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?
$endgroup$
add a comment |
$begingroup$
How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?
$endgroup$
add a comment |
$begingroup$
How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?
$endgroup$
How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?
answered Feb 1 at 8:55
GenericUsrnmeGenericUsrnme
34017
34017
add a comment |
add a comment |
$begingroup$
Since $Y$ is real symmetric,
$Y^dagger = Y^T = Y; tag 1$
thus
$Y^dagger Y = YY^dagger = Y^2, tag 2$
whence
$I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$
it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .
$endgroup$
$begingroup$
why is $Y^dagger = Y^T$ true?
$endgroup$
– Jingyang Li
Feb 3 at 8:44
$begingroup$
@Jingyang: Because $Y$ is real and symmetric.
$endgroup$
– Robert Lewis
Feb 3 at 12:02
add a comment |
$begingroup$
Since $Y$ is real symmetric,
$Y^dagger = Y^T = Y; tag 1$
thus
$Y^dagger Y = YY^dagger = Y^2, tag 2$
whence
$I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$
it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .
$endgroup$
$begingroup$
why is $Y^dagger = Y^T$ true?
$endgroup$
– Jingyang Li
Feb 3 at 8:44
$begingroup$
@Jingyang: Because $Y$ is real and symmetric.
$endgroup$
– Robert Lewis
Feb 3 at 12:02
add a comment |
$begingroup$
Since $Y$ is real symmetric,
$Y^dagger = Y^T = Y; tag 1$
thus
$Y^dagger Y = YY^dagger = Y^2, tag 2$
whence
$I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$
it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .
$endgroup$
Since $Y$ is real symmetric,
$Y^dagger = Y^T = Y; tag 1$
thus
$Y^dagger Y = YY^dagger = Y^2, tag 2$
whence
$I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$
it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .
answered Feb 2 at 5:34


Robert LewisRobert Lewis
48.9k23168
48.9k23168
$begingroup$
why is $Y^dagger = Y^T$ true?
$endgroup$
– Jingyang Li
Feb 3 at 8:44
$begingroup$
@Jingyang: Because $Y$ is real and symmetric.
$endgroup$
– Robert Lewis
Feb 3 at 12:02
add a comment |
$begingroup$
why is $Y^dagger = Y^T$ true?
$endgroup$
– Jingyang Li
Feb 3 at 8:44
$begingroup$
@Jingyang: Because $Y$ is real and symmetric.
$endgroup$
– Robert Lewis
Feb 3 at 12:02
$begingroup$
why is $Y^dagger = Y^T$ true?
$endgroup$
– Jingyang Li
Feb 3 at 8:44
$begingroup$
why is $Y^dagger = Y^T$ true?
$endgroup$
– Jingyang Li
Feb 3 at 8:44
$begingroup$
@Jingyang: Because $Y$ is real and symmetric.
$endgroup$
– Robert Lewis
Feb 3 at 12:02
$begingroup$
@Jingyang: Because $Y$ is real and symmetric.
$endgroup$
– Robert Lewis
Feb 3 at 12:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095969%2fprove-i-yy-dagger-is-a-projection-operator-for-ny%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18
$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44