Prove $I-YY^dagger$ is a projection operator for $N(Y)$












1












$begingroup$


Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.



Thanks in advance!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Does $N(Y) = ker Y = { y mid Yy = 0}$?
    $endgroup$
    – Robert Lewis
    Feb 1 at 8:18










  • $begingroup$
    @RobertLewis yes
    $endgroup$
    – Jingyang Li
    Feb 1 at 8:44
















1












$begingroup$


Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.



Thanks in advance!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Does $N(Y) = ker Y = { y mid Yy = 0}$?
    $endgroup$
    – Robert Lewis
    Feb 1 at 8:18










  • $begingroup$
    @RobertLewis yes
    $endgroup$
    – Jingyang Li
    Feb 1 at 8:44














1












1








1





$begingroup$


Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.



Thanks in advance!










share|cite|improve this question









$endgroup$




Let $Yin mathbb{R}^{m*m}$ be a symmetric matrix and how to prove $I-YY^dagger$ is a projection operator for $N(Y)$? I know $I-Y^dagger Y$ is a projection operator for $N(Y)$.



Thanks in advance!







matrices






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 1 at 8:15









Jingyang LiJingyang Li

113




113












  • $begingroup$
    Does $N(Y) = ker Y = { y mid Yy = 0}$?
    $endgroup$
    – Robert Lewis
    Feb 1 at 8:18










  • $begingroup$
    @RobertLewis yes
    $endgroup$
    – Jingyang Li
    Feb 1 at 8:44


















  • $begingroup$
    Does $N(Y) = ker Y = { y mid Yy = 0}$?
    $endgroup$
    – Robert Lewis
    Feb 1 at 8:18










  • $begingroup$
    @RobertLewis yes
    $endgroup$
    – Jingyang Li
    Feb 1 at 8:44
















$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18




$begingroup$
Does $N(Y) = ker Y = { y mid Yy = 0}$?
$endgroup$
– Robert Lewis
Feb 1 at 8:18












$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44




$begingroup$
@RobertLewis yes
$endgroup$
– Jingyang Li
Feb 1 at 8:44










2 Answers
2






active

oldest

votes


















0












$begingroup$

How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Since $Y$ is real symmetric,



    $Y^dagger = Y^T = Y; tag 1$



    thus



    $Y^dagger Y = YY^dagger = Y^2, tag 2$



    whence



    $I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$



    it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      why is $Y^dagger = Y^T$ true?
      $endgroup$
      – Jingyang Li
      Feb 3 at 8:44










    • $begingroup$
      @Jingyang: Because $Y$ is real and symmetric.
      $endgroup$
      – Robert Lewis
      Feb 3 at 12:02












    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095969%2fprove-i-yy-dagger-is-a-projection-operator-for-ny%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?






        share|cite|improve this answer









        $endgroup$



        How can you rewrite $I-YY^dagger$ if you know Y is symmetric and you already know that $I-Y^dagger Y$ is a projection operator?







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 1 at 8:55









        GenericUsrnmeGenericUsrnme

        34017




        34017























            0












            $begingroup$

            Since $Y$ is real symmetric,



            $Y^dagger = Y^T = Y; tag 1$



            thus



            $Y^dagger Y = YY^dagger = Y^2, tag 2$



            whence



            $I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$



            it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              why is $Y^dagger = Y^T$ true?
              $endgroup$
              – Jingyang Li
              Feb 3 at 8:44










            • $begingroup$
              @Jingyang: Because $Y$ is real and symmetric.
              $endgroup$
              – Robert Lewis
              Feb 3 at 12:02
















            0












            $begingroup$

            Since $Y$ is real symmetric,



            $Y^dagger = Y^T = Y; tag 1$



            thus



            $Y^dagger Y = YY^dagger = Y^2, tag 2$



            whence



            $I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$



            it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              why is $Y^dagger = Y^T$ true?
              $endgroup$
              – Jingyang Li
              Feb 3 at 8:44










            • $begingroup$
              @Jingyang: Because $Y$ is real and symmetric.
              $endgroup$
              – Robert Lewis
              Feb 3 at 12:02














            0












            0








            0





            $begingroup$

            Since $Y$ is real symmetric,



            $Y^dagger = Y^T = Y; tag 1$



            thus



            $Y^dagger Y = YY^dagger = Y^2, tag 2$



            whence



            $I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$



            it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .






            share|cite|improve this answer









            $endgroup$



            Since $Y$ is real symmetric,



            $Y^dagger = Y^T = Y; tag 1$



            thus



            $Y^dagger Y = YY^dagger = Y^2, tag 2$



            whence



            $I - Y^dagger Y = I - YY^dagger = I - Y^2; tag 3$



            it therefore follows that $I - YY^dagger$ is a projection onto $N(Y)$ if and only if $I - Y^dagger Y$ is . . .







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 2 at 5:34









            Robert LewisRobert Lewis

            48.9k23168




            48.9k23168












            • $begingroup$
              why is $Y^dagger = Y^T$ true?
              $endgroup$
              – Jingyang Li
              Feb 3 at 8:44










            • $begingroup$
              @Jingyang: Because $Y$ is real and symmetric.
              $endgroup$
              – Robert Lewis
              Feb 3 at 12:02


















            • $begingroup$
              why is $Y^dagger = Y^T$ true?
              $endgroup$
              – Jingyang Li
              Feb 3 at 8:44










            • $begingroup$
              @Jingyang: Because $Y$ is real and symmetric.
              $endgroup$
              – Robert Lewis
              Feb 3 at 12:02
















            $begingroup$
            why is $Y^dagger = Y^T$ true?
            $endgroup$
            – Jingyang Li
            Feb 3 at 8:44




            $begingroup$
            why is $Y^dagger = Y^T$ true?
            $endgroup$
            – Jingyang Li
            Feb 3 at 8:44












            $begingroup$
            @Jingyang: Because $Y$ is real and symmetric.
            $endgroup$
            – Robert Lewis
            Feb 3 at 12:02




            $begingroup$
            @Jingyang: Because $Y$ is real and symmetric.
            $endgroup$
            – Robert Lewis
            Feb 3 at 12:02


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095969%2fprove-i-yy-dagger-is-a-projection-operator-for-ny%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith