prove that $displaystyle n^nbigg(frac{n+1}{2}bigg)^{2n}geq (n!)^3$ for natural number $n$
$begingroup$
prove that $$n^nbigg(frac{n+1}{2}bigg)^{2n}geq (n!)^3.$$ for $n$ is a natural number
what i try
i have use AM GM inequality
$$frac{1^3+2^3+3^3+cdots +n^3}{n}geq ((n!))^{frac{1}{3n}}$$
how i prove question inequality help me please
inequality
$endgroup$
add a comment |
$begingroup$
prove that $$n^nbigg(frac{n+1}{2}bigg)^{2n}geq (n!)^3.$$ for $n$ is a natural number
what i try
i have use AM GM inequality
$$frac{1^3+2^3+3^3+cdots +n^3}{n}geq ((n!))^{frac{1}{3n}}$$
how i prove question inequality help me please
inequality
$endgroup$
$begingroup$
Hint: $1^3+2^3+...+n^3=frac{n(n+1)(2n+1)}{6}$
$endgroup$
– Peter Foreman
Feb 2 at 13:55
$begingroup$
That is the sum of first natural squares I think not of cubes
$endgroup$
– Thomas
Feb 2 at 16:42
add a comment |
$begingroup$
prove that $$n^nbigg(frac{n+1}{2}bigg)^{2n}geq (n!)^3.$$ for $n$ is a natural number
what i try
i have use AM GM inequality
$$frac{1^3+2^3+3^3+cdots +n^3}{n}geq ((n!))^{frac{1}{3n}}$$
how i prove question inequality help me please
inequality
$endgroup$
prove that $$n^nbigg(frac{n+1}{2}bigg)^{2n}geq (n!)^3.$$ for $n$ is a natural number
what i try
i have use AM GM inequality
$$frac{1^3+2^3+3^3+cdots +n^3}{n}geq ((n!))^{frac{1}{3n}}$$
how i prove question inequality help me please
inequality
inequality
edited Feb 2 at 14:09
Bernard
124k741117
124k741117
asked Feb 2 at 13:46
jackyjacky
1,349816
1,349816
$begingroup$
Hint: $1^3+2^3+...+n^3=frac{n(n+1)(2n+1)}{6}$
$endgroup$
– Peter Foreman
Feb 2 at 13:55
$begingroup$
That is the sum of first natural squares I think not of cubes
$endgroup$
– Thomas
Feb 2 at 16:42
add a comment |
$begingroup$
Hint: $1^3+2^3+...+n^3=frac{n(n+1)(2n+1)}{6}$
$endgroup$
– Peter Foreman
Feb 2 at 13:55
$begingroup$
That is the sum of first natural squares I think not of cubes
$endgroup$
– Thomas
Feb 2 at 16:42
$begingroup$
Hint: $1^3+2^3+...+n^3=frac{n(n+1)(2n+1)}{6}$
$endgroup$
– Peter Foreman
Feb 2 at 13:55
$begingroup$
Hint: $1^3+2^3+...+n^3=frac{n(n+1)(2n+1)}{6}$
$endgroup$
– Peter Foreman
Feb 2 at 13:55
$begingroup$
That is the sum of first natural squares I think not of cubes
$endgroup$
– Thomas
Feb 2 at 16:42
$begingroup$
That is the sum of first natural squares I think not of cubes
$endgroup$
– Thomas
Feb 2 at 16:42
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
First o all, by expanding the terms we obtain$$n^nbigg(frac{n+1}{2}bigg)^{2n}{={1over n^n}cdot bigg(frac{n(n+1)}{2}bigg)^{2n}\={1over n^n}cdot (1+2^3+cdots +n^3)^n}$$by substitution and taking the $n$-th root, we need to prove that $${1+2^3+cdots+n^3over n}ge sqrt[n]{n!^3}=sqrt[n]{1^3cdot 2^3 cdots n^3}$$which is straight-forward by AM-GM
$endgroup$
add a comment |
$begingroup$
You can also use Stirling approximation and Taylor expansions to show that
$$a_n=n log (n)+2 n log left(frac{n+1}{2}right) - 3 log(n!) >0$$ This would give
$$a_n=left(2-frac{3}{2} log
left({2 pi }right)right)+ (3-log (4)),n-frac{3}{2} log left({n}right)-frac{5}{4
n}+Oleft(frac{1}{n^2}right)$$ which is positive $forall, n geq 2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097303%2fprove-that-displaystyle-nn-bigg-fracn12-bigg2n-geq-n3-for-natu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First o all, by expanding the terms we obtain$$n^nbigg(frac{n+1}{2}bigg)^{2n}{={1over n^n}cdot bigg(frac{n(n+1)}{2}bigg)^{2n}\={1over n^n}cdot (1+2^3+cdots +n^3)^n}$$by substitution and taking the $n$-th root, we need to prove that $${1+2^3+cdots+n^3over n}ge sqrt[n]{n!^3}=sqrt[n]{1^3cdot 2^3 cdots n^3}$$which is straight-forward by AM-GM
$endgroup$
add a comment |
$begingroup$
First o all, by expanding the terms we obtain$$n^nbigg(frac{n+1}{2}bigg)^{2n}{={1over n^n}cdot bigg(frac{n(n+1)}{2}bigg)^{2n}\={1over n^n}cdot (1+2^3+cdots +n^3)^n}$$by substitution and taking the $n$-th root, we need to prove that $${1+2^3+cdots+n^3over n}ge sqrt[n]{n!^3}=sqrt[n]{1^3cdot 2^3 cdots n^3}$$which is straight-forward by AM-GM
$endgroup$
add a comment |
$begingroup$
First o all, by expanding the terms we obtain$$n^nbigg(frac{n+1}{2}bigg)^{2n}{={1over n^n}cdot bigg(frac{n(n+1)}{2}bigg)^{2n}\={1over n^n}cdot (1+2^3+cdots +n^3)^n}$$by substitution and taking the $n$-th root, we need to prove that $${1+2^3+cdots+n^3over n}ge sqrt[n]{n!^3}=sqrt[n]{1^3cdot 2^3 cdots n^3}$$which is straight-forward by AM-GM
$endgroup$
First o all, by expanding the terms we obtain$$n^nbigg(frac{n+1}{2}bigg)^{2n}{={1over n^n}cdot bigg(frac{n(n+1)}{2}bigg)^{2n}\={1over n^n}cdot (1+2^3+cdots +n^3)^n}$$by substitution and taking the $n$-th root, we need to prove that $${1+2^3+cdots+n^3over n}ge sqrt[n]{n!^3}=sqrt[n]{1^3cdot 2^3 cdots n^3}$$which is straight-forward by AM-GM
answered Feb 2 at 14:34


Mostafa AyazMostafa Ayaz
18.1k31040
18.1k31040
add a comment |
add a comment |
$begingroup$
You can also use Stirling approximation and Taylor expansions to show that
$$a_n=n log (n)+2 n log left(frac{n+1}{2}right) - 3 log(n!) >0$$ This would give
$$a_n=left(2-frac{3}{2} log
left({2 pi }right)right)+ (3-log (4)),n-frac{3}{2} log left({n}right)-frac{5}{4
n}+Oleft(frac{1}{n^2}right)$$ which is positive $forall, n geq 2$.
$endgroup$
add a comment |
$begingroup$
You can also use Stirling approximation and Taylor expansions to show that
$$a_n=n log (n)+2 n log left(frac{n+1}{2}right) - 3 log(n!) >0$$ This would give
$$a_n=left(2-frac{3}{2} log
left({2 pi }right)right)+ (3-log (4)),n-frac{3}{2} log left({n}right)-frac{5}{4
n}+Oleft(frac{1}{n^2}right)$$ which is positive $forall, n geq 2$.
$endgroup$
add a comment |
$begingroup$
You can also use Stirling approximation and Taylor expansions to show that
$$a_n=n log (n)+2 n log left(frac{n+1}{2}right) - 3 log(n!) >0$$ This would give
$$a_n=left(2-frac{3}{2} log
left({2 pi }right)right)+ (3-log (4)),n-frac{3}{2} log left({n}right)-frac{5}{4
n}+Oleft(frac{1}{n^2}right)$$ which is positive $forall, n geq 2$.
$endgroup$
You can also use Stirling approximation and Taylor expansions to show that
$$a_n=n log (n)+2 n log left(frac{n+1}{2}right) - 3 log(n!) >0$$ This would give
$$a_n=left(2-frac{3}{2} log
left({2 pi }right)right)+ (3-log (4)),n-frac{3}{2} log left({n}right)-frac{5}{4
n}+Oleft(frac{1}{n^2}right)$$ which is positive $forall, n geq 2$.
edited Feb 3 at 3:25
answered Feb 2 at 16:13
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097303%2fprove-that-displaystyle-nn-bigg-fracn12-bigg2n-geq-n3-for-natu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: $1^3+2^3+...+n^3=frac{n(n+1)(2n+1)}{6}$
$endgroup$
– Peter Foreman
Feb 2 at 13:55
$begingroup$
That is the sum of first natural squares I think not of cubes
$endgroup$
– Thomas
Feb 2 at 16:42